Hi, please provide an algorithm for this question: Click
I am trying it from long time but couldn't reach a proper algo.
# | User | Rating |
---|---|---|
1 | jiangly | 4039 |
2 | tourist | 3841 |
3 | jqdai0815 | 3682 |
4 | ksun48 | 3590 |
5 | ecnerwala | 3542 |
6 | Benq | 3535 |
7 | orzdevinwang | 3526 |
8 | gamegame | 3477 |
9 | heuristica | 3357 |
10 | Radewoosh | 3355 |
# | User | Contrib. |
---|---|---|
1 | cry | 168 |
2 | -is-this-fft- | 165 |
3 | atcoder_official | 160 |
3 | Um_nik | 160 |
5 | djm03178 | 158 |
6 | Dominater069 | 156 |
7 | adamant | 153 |
8 | luogu_official | 152 |
9 | awoo | 151 |
10 | TheScrasse | 147 |
Hi, please provide an algorithm for this question: Click
I am trying it from long time but couldn't reach a proper algo.
Name |
---|
The number of possible paths is 2*(n*(n-1)+2), so you can solve it by brute force
Can you explain how you got this number?
Okay I got it, just confirming:
For each vertex in one row there are N-1 vertices that end the Hamiltonian path.
Plus for vertex 1 and N there are N ways so that 2.
As there are 2 rows so finally multiplied by 2.
yes, i got this number in that way too