Блог пользователя coder_in_use

Автор coder_in_use, история, 6 лет назад, По-английски

I'm trying to find the function with some properties:
1. f(u) = 0 iff v = 0
2. f(av) = |a| f(v)
Does these kind of functions exist and if yes, how do they called and where can I get more info about it?

Thanks in advance!

  • Проголосовать: нравится
  • 0
  • Проголосовать: не нравится

»
6 лет назад, # |
Rev. 2   Проголосовать: нравится +10 Проголосовать: не нравится

Yes. f(x) = |x|
And i think that first property is redundantly since f(0) = f(0 * x) = |0| * f(x) = 0

»
6 лет назад, # |
  Проголосовать: нравится -9 Проголосовать: не нравится

yeah

f(x) = 0

»
6 лет назад, # |
  Проголосовать: нравится 0 Проголосовать: не нравится

The "iff" in the first property means "if and only if". This is an equivalence property which can be rewritten as

  1. If u = 0, then f(u) = 0.

  2. If f(u) = 0, then u = 0.

The contrapositives of these two conditional statements are:

  1. If f(u)  ≠  0, then u  ≠  0.

  2. If u  ≠  0, then f(u)  ≠  0.

»
6 лет назад, # |
Rev. 3   Проголосовать: нравится +22 Проголосовать: не нравится

Here is short solution to your functional equation:

Let f(1) = c for some constant c ≠ 0. Then using (2), f(a·1) = |af(1) = c|a|. Therefore, functions which satisfy the properties must be of the form f(x) = c|x| .

Checking these solutions, it is clear that f(0) = c|0| = 0 and since c ≠ 0, (1) is satisfied. Additionally, f(av) = c|av| = c|a||v| = |a|f(v) by property of absolute values.

Therefore, all work.

Notably, f(x) = 0 (as proposed by farmersrice) does not work as it fails the "only if" portion of (1).

Additionally, the first condition is not redundant for the same reason: without it, we may only conclude the "if" and not the "only if" from (2).