Exist matrix A and matrix B. A=power(B, n). How can I found n?
# | User | Rating |
---|---|---|
1 | jiangly | 4039 |
2 | tourist | 3841 |
3 | jqdai0815 | 3682 |
4 | ksun48 | 3590 |
5 | ecnerwala | 3542 |
6 | Benq | 3535 |
7 | orzdevinwang | 3526 |
8 | gamegame | 3477 |
9 | heuristica | 3357 |
10 | Radewoosh | 3355 |
# | User | Contrib. |
---|---|---|
1 | cry | 168 |
2 | -is-this-fft- | 165 |
3 | atcoder_official | 160 |
3 | Um_nik | 160 |
5 | djm03178 | 158 |
6 | Dominater069 | 156 |
7 | adamant | 153 |
8 | luogu_official | 152 |
9 | awoo | 151 |
10 | TheScrasse | 147 |
Exist matrix A and matrix B. A=power(B, n). How can I found n?
Name |
---|
Auto comment: topic has been translated by NekoKarp (original revision, translated revision, compare)
Are A and B over real numbers or integers modulo a prime? If they are over integers modulo a prime then this is at least as hard to calculate as discrete logarithm modulo a prime, i.e. pretty hard.
I don't know a solution but here are some properties that would make this problem easy: