№ | Пользователь | Рейтинг |
---|---|---|
1 | tourist | 3993 |
2 | jiangly | 3743 |
3 | orzdevinwang | 3707 |
4 | Radewoosh | 3627 |
5 | jqdai0815 | 3620 |
6 | Benq | 3564 |
7 | Kevin114514 | 3443 |
8 | ksun48 | 3434 |
9 | Rewinding | 3397 |
10 | Um_nik | 3396 |
Страны | Города | Организации | Всё → |
№ | Пользователь | Вклад |
---|---|---|
1 | cry | 167 |
2 | Um_nik | 163 |
3 | maomao90 | 162 |
3 | atcoder_official | 162 |
5 | adamant | 159 |
6 | -is-this-fft- | 158 |
7 | awoo | 157 |
8 | TheScrasse | 154 |
9 | Dominater069 | 153 |
9 | nor | 153 |
Название |
---|
for any $$$ N <= 100000 $$$, maximum distinct prime divisors is 6. Let us iterate over the denominator. For a particular iteration let's say denominator is k.
All values in the range $$$[i * k, (i + 1) * k)$$$ will contribute a sum of $$$i$$$ to the sum. We wish to find how many number in this range are co-prime to k, and if we suppose that number to be $$$t$$$, we can simply add $$$t * i$$$ to our final answer for this range of values with denominator $$$k$$$.
To find the number of coprime values in this range we can make use of the fact that number of distinct divisors of all numbers we require is <= 6 and hence can make use of inclusion exclusion principle to find the number. [Comment if more clarity is required on this]
Care must be taken for final iteration for each denominator when the range would be $$$[i * k, min(N, (i + 1) * k))$$$
The complexity for the solution will be $$$O(2^M * Nlog(N))$$$ where $$$O(2^M)$$$ (M is the maximum number of distinct prime divisors for any number $$$< N$$$ (6 in this case)) is contributed by inclusion exclusion logic and $$$O(Nlog(N))$$$ is your sieve's complexity.
This problem can be solved by seive. The main idea is as followed.
Let $$$f(g)$$$ be the summation of pair which their gcd is equal to $$$g$$$. Then we can write $$$f(g)$$$ as ...
$$$f(g) = $$$ $$$ \sum_{gcd(i,j) = g} \lfloor{\frac{j}{i}} \rfloor$$$ $$$ = \sum_{g | x, g | y} \lfloor{\frac{y}{x}}\rfloor - \sum_{d \ge 2} f(g * d)$$$.
You should iterate $$$g$$$ from $$$n$$$ to $$$1$$$ to calculate this with seive. The key idea is to calculate $$$ \sum_{g | x, g | y} \lfloor{\frac{y}{x}}\rfloor $$$ in $$$O(1)$$$ while doing seive. (Not hard)
The answer is $$$f(1)$$$. Code (If you want)