Can some one help me on how to solve this problem?
Editorial is given in Japanese, i used google translater to understand it but some sentence doesn't make any sense to me and i couldn't understand solution from editorial.
# | User | Rating |
---|---|---|
1 | tourist | 3856 |
2 | jiangly | 3747 |
3 | orzdevinwang | 3706 |
4 | jqdai0815 | 3682 |
5 | ksun48 | 3591 |
6 | gamegame | 3477 |
7 | Benq | 3468 |
8 | Radewoosh | 3462 |
9 | ecnerwala | 3451 |
10 | heuristica | 3431 |
# | User | Contrib. |
---|---|---|
1 | cry | 167 |
2 | -is-this-fft- | 162 |
3 | Dominater069 | 160 |
4 | Um_nik | 158 |
5 | atcoder_official | 156 |
6 | djm03178 | 153 |
7 | adamant | 152 |
8 | luogu_official | 149 |
9 | awoo | 147 |
10 | TheScrasse | 146 |
Can some one help me on how to solve this problem?
Editorial is given in Japanese, i used google translater to understand it but some sentence doesn't make any sense to me and i couldn't understand solution from editorial.
Name |
---|
Problem tag — Digit DP.
Here is my submission, which you can refer to: Atcoder Submission 8567969
I don't know the solution of the editorial, just give it on my own.
Prerequesite knowledge: For every $$$a, b \in \mathbb{N}$$$ then $$$a+b = a\oplus b + 2\times (a\ and\ b) =(a\ or\ b) + (a\ and\ b)$$$. Well this is easy to prove.
Therefore let $$$x = a\ or\ b,\ y = a\ and\ b,\ u = a\oplus b,\ v = a+b$$$ then $$$x+y = v, x-y = u$$$. So for each pair $$$(u, v)$$$ in the answer maps with exactly one pair $$$(x, y)$$$, and each pair $$$(x, y)$$$ such that $$$y \subseteq x, y \le x \le N$$$ corresponds with only one pair $$$(u, v)$$$. Here $$$y \subseteq x$$$ means in binary representation, each bit of $$$y$$$ is smaller than the corresponding bit of $$$x$$$.
So we can count the number of pair $$$(a, b)$$$ such that $$$b \subseteq a, a+b \le N$$$.
Let say in binary representation, $$$a = \overline{a_{60}a_{59}...a_{1}a_{0}}$$$ and $$$b = \overline{b_{60}b_{59}...b_{1}b_{0}}$$$ then we can solve the problem using Digit DP. You can refer to my solution.
Thanks a lot for your explanation
Hi
Can someone explain the dp required to count pairs of (a,b) described above?
Auto comment: topic has been updated by Lets__go (previous revision, new revision, compare).