№ | Пользователь | Рейтинг |
---|---|---|
1 | tourist | 3985 |
2 | jiangly | 3741 |
3 | jqdai0815 | 3682 |
4 | Benq | 3529 |
5 | orzdevinwang | 3526 |
6 | ksun48 | 3489 |
7 | Radewoosh | 3483 |
8 | Kevin114514 | 3442 |
9 | ecnerwala | 3392 |
9 | Um_nik | 3392 |
Страны | Города | Организации | Всё → |
№ | Пользователь | Вклад |
---|---|---|
1 | cry | 169 |
2 | maomao90 | 162 |
2 | Um_nik | 162 |
2 | atcoder_official | 162 |
5 | djm03178 | 158 |
6 | -is-this-fft- | 157 |
7 | adamant | 155 |
8 | awoo | 154 |
8 | Dominater069 | 154 |
10 | nor | 150 |
Название |
---|
Petr For the TopCoder problem, mentioned, I'm unable to prove this part:
However, we still have the freedom of choosing which pair of green and red ends we use for reducing the problem to size n-1. If b>0, then we will choose which green end is one of the red ends of the first green-red string paired with.
If we delay merging green-green strings with red-red strings until the end, how do we prove that the answer doesn't change? Playing around with the DP recurrence didn't help.
Thanks for your help!