# | User | Rating |
---|---|---|
1 | tourist | 3856 |
2 | jiangly | 3747 |
3 | orzdevinwang | 3706 |
4 | jqdai0815 | 3682 |
5 | ksun48 | 3591 |
6 | gamegame | 3477 |
7 | Benq | 3468 |
8 | Radewoosh | 3462 |
9 | ecnerwala | 3451 |
10 | heuristica | 3431 |
# | User | Contrib. |
---|---|---|
1 | cry | 167 |
2 | -is-this-fft- | 162 |
3 | Dominater069 | 160 |
4 | Um_nik | 158 |
5 | atcoder_official | 157 |
6 | Qingyu | 156 |
7 | djm03178 | 151 |
7 | adamant | 151 |
9 | luogu_official | 150 |
10 | awoo | 147 |
Name |
---|
Petr For the TopCoder problem, mentioned, I'm unable to prove this part:
However, we still have the freedom of choosing which pair of green and red ends we use for reducing the problem to size n-1. If b>0, then we will choose which green end is one of the red ends of the first green-red string paired with.
If we delay merging green-green strings with red-red strings until the end, how do we prove that the answer doesn't change? Playing around with the DP recurrence didn't help.
Thanks for your help!