# Computing Jordan canonical form↵
↵
**Definition 1** *root subspace* for $\lambda$ is the subspace satisfying $\lambda$ $\exist k, (\mathcal{A}-\lambda\mathcal{I})^k\alpha=0$↵
↵
**Lemma 1** The sum of different root subspace is direst sum↵
↵
*proof* ↵
↵
$f(x)$ is the characteristic polynomial's factor of $\lambda_1$ , $g(x)$ is the remaining part↵
↵
Now $f(x)$ is annihilator for $W_{\lambda_1}$ ↵
because the whole characteristic polynomial is annihilator, but $g(x)$ cannot annihilate $W_{\lambda _1}$ (consider the diagonal of the matrices)↵
↵
we have $(f(x),g(x))=1$ now we claim that $g(\mathcal{A})$ is invertible. There exist $u(x)g(x)=1 \bmod f(x)$↵
↵
so $u(\mathcal{A})g(\mathcal{A})=\mathcal{I}$↵
↵
to prove $W_{\lambda_1}\oplus W_{\lambda_2}\dots\oplus W_{\lambda_t}$ we only need to prove vector $0$ have only one representation.↵
↵
say $0=u_1+u_2+\dots+u_t$ . applying $g(\mathcal{A})$ to both side yield $g(\mathcal{A})u_1=0$ . Then applying $u(\mathcal{A})$ gives the result. $\square$↵
↵
**Definition 2** *cyclic subspace* $C(\alpha)$ is the subspace generated by $\alpha \ ,\mathcal{A}\alpha,\ \mathcal{A}^2\alpha \dots$ and denote the last none zero term of the sequence $last(\alpha)$↵
↵
(it's easy to prove $\alpha \ ,\mathcal{A}\alpha,\ \mathcal{A}^2\alpha \dots$ are independent. ↵
↵
**Lemma 2** $V$ is the direct sum of some cyclic subspace↵
↵
*proof*↵
↵
we give a constructive and algorithmic proof.↵
↵
Let the degree of minimal polynomial be $d$.↵
↵
First start with solving $AX=0$ ,then $A^2X=0$ ..... $A^dX=0$ The solution space is expanding. Denote $X_i$ the set of basis that is newly inserted after solving the i-th equation.↵
↵
Denote the vectors in $X_d$ $\alpha_1,\alpha_2\dots\alpha_k$ , in $X_{d-1}$ $\beta_1,\beta_2\dots\beta_l$ in $X_{d-2}$ $\gamma_1,\gamma_2\dots\gamma_m$ ↵
↵
First we claim that $C(\alpha_1)\oplus C(\alpha_2)\dots \oplus C(\alpha_k)$ .↵
$$↵
\sum_{i,j} \mu_{ij}\mathcal{A}^j\alpha_i=0↵
$$↵
applying $\mathcal{A}^{d-1}$ to both side yields↵
$$↵
\sum_{i,j} \mu_{ij}\mathcal{A}^{j+d-1}\alpha_i=0↵
$$↵
↵
$$↵
\sum_{i} \mu_{i0}\mathcal{A}^{d-1}\alpha_i=0↵
$$↵
↵
now↵
$$↵
\sum_{i} \mu_{i0}\alpha_i↵
$$↵
is in $Ker(\mathcal{A}^{d-1})$ ,but $\alpha_i$ are newly inserted, if this is not $0$, some $\alpha$ can be represented by the basis of $Ker(\mathcal{A}^{d-1})$ ,a contradiction.↵
↵
so $\forall i,\mu_{i0}=0$ because $\alpha_i$ are linearly independent.↵
$$↵
\sum_{i\ge1,j} \mu_{ij}\mathcal{A}^j\alpha_i=0↵
$$↵
now apply $\mathcal{A}^{d-2}$ and similarly $\forall i,\mu_{i1}=0$. the remaining proof is obvious.↵
↵
At that time, we want to insert $C(\beta_i)$ but not all of them should be inserted.↵
↵
Firstly I thought if $\beta$ is linearly independent with all $\mathcal{A}\alpha$ , $C(\beta)$ and $C(\alpha)$ is direct sum. but that was wrong.↵
↵
consider the following example $A=$↵
↵
```↵
0 0 1 2 3↵
0 0 0 1 -1↵
0 0 0 1 2↵
0 0 0 0 0↵
0 0 0 0 0↵
```↵
↵
$X_1$ is↵
↵
```↵
1 0↵
0 1↵
0 0 ↵
0 0↵
0 0↵
```↵
↵
$X_2$ is↵
↵
```↵
0 0↵
0 0↵
1 0↵
0 -2↵
0 1↵
```↵
↵
$X_3$ is↵
↵
```↵
0↵
0↵
0↵
0↵
1↵
```↵
↵
↵
↵
now $\alpha$ $\mathcal{A} \alpha$ $\mathcal{A}^2 \alpha$ are↵
↵
```↵
0 3 2↵
0 -1 0↵
0 2 0↵
0 0 0↵
1 0 0↵
```↵
↵
now choose in $X_2$ $\beta =$↵
↵
```↵
0↵
0↵
1↵
0↵
0↵
```↵
↵
which is linearly independent with $\mathcal{A}\alpha$ but $\mathcal{A}\beta=$↵
↵
```↵
1↵
0↵
0↵
0↵
0↵
```↵
↵
is linearly independent with $\mathcal{A}^2 \alpha$↵
↵
so it occurred to me that I should maintain a linearly independent kernel. ↵
$$↵
\sum_{i,j} \mu_{ij}\mathcal{A}^j\alpha_i+\sum_{i,j}\lambda_{ij}\mathcal{A}^j\beta_i=0↵
$$↵
apply $\mathcal{A}^{d-1}$ we have.↵
$$↵
\sum_{i\ge1,j} \mu_{ij}\mathcal{A}^j\alpha_i+\sum_{i,j}\lambda_{ij}\mathcal{A}^j\beta_i=0↵
$$↵
now apply $\mathcal{A}^{d-2}$↵
$$↵
\sum_{i\ge1} \mu_{i,1}\mathcal{A}^{d-1}\alpha_i+\sum_{i}\lambda_{i,0}\mathcal{A}^{d-2}\beta_i=0↵
$$↵
because the $\beta$ we choose ($\beta$ here is not all the $\beta$ )to add here satisfy $last(\beta)$ is linearly independent with $last(\alpha)$ ↵
↵
so $\forall i, \mu_{i,1}=\lambda_{i,0}=0$ continue the process, we can prove we get some direct sum of cyclic subspace.↵
↵
but is the sum the complete space $V$ ?↵
↵
Note that originally $X_1, X_2 \dots$ are a basis.↵
↵
when we come to the k-th layer(corresponding to inserting $X_k$) , we can consider this algorithm as substituting some vectors in $X_k$ with the previously inserted vectors. For example, use $\mathcal{A} \alpha$ to change out some $\beta$ . Because originally $last(X_{d-1})$ is linearly independent with size $|X_{d-1}|=|last(X_{d-1})|$ , finally the vectors in the answer set form a set with size $|last(X_{d-1})|$ too.(the basis of a space is a fixed number).↵
↵
So finally we will get a set with size $|X_{d-1}|$ in place of $X_{d-1}$. For $X_k$ it is similar. $\square$↵
↵
**Theorem** There is a basis under which the matrix is in Jordan form.↵
↵
*proof* ↵
↵
For every eigenvalue, run algorithm of lemma 2. And the union of vectors is a Jordan basis.↵
↵
Furthermore, it is easy to see that the number of different size of Jordan square is determined by the solution of $(A-\lambda^kI)X=0$ so it is determined by $rank(A-\lambda I)^k$ . Which is invariant for similar relation.↵
↵
So Jordan form is canonical form of similar matrices. $\square$↵
↵
**Corollary** Jordan form and its transfer matrix can be computed in $O(n^4)$.↵
↵
*proof*↵
↵
Computing the solution for $A^kX=0$ need $Cn^4$ operations if implemented using ordinary method.↵
↵
Computing the chain of a vector $\alpha$ (the space $C(\alpha)$) need $C\sum d_i\times n^2=Cn^3$. Maintaining the kernel need $C\sum d_i^3=O(n^3)$↵
↵
So the complexity is $O(n^4)$ $\square$↵
↵
↵
↵
This method is a clear and straightforward geometry method. It is easy to implement compared to algebraic method of $\lambda$-matrix. And the proof of lemma 2 is different from classical textbook because I want to prove the correctness of the algorithm.↵
↵
>There are better algorithms for computing Jordan form. For example, *An $O(n^3)$ Algorithm for the Frobenius Normal Form* Storjohann 1998 is an easy faster way.↵
>↵
>I did not find a fast algorithm that can compute transfer matrix of Jordan form online.↵
>↵
>but use idea of some reduction. It may be done with better complexity.↵
↵
↵
↵
The code below needs eigenvalues.↵
↵
```cpp↵
#include<bits/stdc++.h>↵
#define de fprintf(stderr,"on-%d\n",__LINE__)↵
#define pb push_back↵
#define fr(i,a,b) for(int i(a),end##i(b);i<=end##i;i++)↵
#define fd(i,a,b) for(int i(a),end##i(b);i>=end##i;i--)↵
#define reduce Reduce↵
#define apply Apply↵
using namespace std;↵
const int N=30;↵
int m;↵
struct frac{↵
int q,p;↵
frac(){↵
q=0;p=1;↵
}↵
void out(){↵
if(p==1)printf("%7d ",q);↵
else printf("%3d/%3d ",q,p);↵
}↵
};↵
frac zero;↵
frac make(int x,int y){↵
frac A;↵
A.q=x;A.p=y;↵
return A; ↵
}↵
frac r[N];↵
int d[N];↵
frac V(int x){↵
return make(x,1); ↵
}↵
frac read(){↵
int x;scanf("%d",&x);↵
return V(x); ↵
}↵
int gcd(int x,int y){↵
if(!x)return y;↵
return gcd(y%x,x);↵
}↵
frac reduce(frac &A){↵
int g=gcd(A.p,A.q); ↵
A.p/=g;A.q/=g;↵
if(A.p<0)A.p=-A.p,A.q=-A.q;↵
return A;↵
}↵
frac reduce(frac A){↵
int g=gcd(A.p,A.q);↵
A.p/=g;A.q/=g;↵
if(A.p<0)A.p=-A.p,A.q=-A.q;↵
return A;↵
}↵
frac operator +(const frac &A,const frac &B){↵
return reduce(make(A.q*B.p+B.q*A.p,A.p*B.p)); ↵
}↵
frac operator -(const frac &A,const frac &B){↵
return reduce(make(A.q*B.p-B.q*A.p,A.p*B.p)); ↵
}↵
frac operator *(const frac &A,const frac &B){↵
assert(A.p);↵
return reduce(make(A.q*B.q,A.p*B.p));↵
}↵
frac operator /(const frac &A,const frac &B){↵
return reduce(make(A.q*B.p,A.p*B.q));↵
}↵
struct matrix{↵
frac A[N][N];↵
frac* operator [](int x){return A[x];}↵
void out(){↵
fr(i,1,m){↵
fr(j,1,m)A[i][j].out();↵
printf("\n");↵
}↵
}↵
};↵
matrix I; ↵
void init(){↵
fr(i,1,m)fr(j,1,m)I[i][j]=V(i==j);↵
}↵
matrix operator *(matrix A,matrix B){↵
matrix C;↵
fr(i,1,m)fr(j,1,m){↵
C[i][j]=V(0);↵
fr(k,1,m)C[i][j]=C[i][j]+A[i][k]*B[k][j];↵
}↵
return C;↵
}↵
matrix operator *(frac v,matrix A){↵
fr(i,1,m)fr(j,1,m)A[i][j]=v*A[i][j];↵
return A;↵
}↵
matrix operator +(matrix A,matrix B){↵
fr(i,1,m)fr(j,1,m)A[i][j]=A[i][j]+B[i][j];↵
return A;↵
}↵
matrix operator -(matrix A,matrix B){↵
fr(i,1,m)fr(j,1,m)A[i][j]=A[i][j]-B[i][j];↵
return A;↵
}↵
vector<frac> apply(matrix &A,const vector<frac>& B){↵
vector<frac> C;C.resize(m+1);↵
fr(i,1,m)fr(k,1,m){↵
C[i]=C[i]+A[i][k]*B[k]; ↵
}↵
return C;↵
}↵
bool p[N];↵
int to[N];↵
void rowreduce(matrix &A,int n,int m,int op=0){↵
fr(i,1,m)to[i]=p[i]=0;↵
fr(i,1,n){↵
int s=0;↵
fr(j,1,m)if(!p[j]&&A[i][j].q){↵
s=j;break; ↵
}↵
if(!s)continue;↵
to[i]=s;↵
p[s]=1;↵
fr(j,op*i+1,n)if(j!=i&&A[j][s].q){↵
frac t=A[j][s]/A[i][s]; ↵
fr(k,1,m)A[j][k]=A[j][k]-t*A[i][k]; ↵
}↵
}↵
}↵
void swap(frac* A,frac *B){↵
fr(i,1,m)swap(A[i],B[i]); ↵
}↵
matrix inverse(matrix A){↵
matrix B=I;↵
fr(i,1,m){↵
int s=0;↵
fr(j,i,m)if(A[j][i].q){↵
s=j;break; ↵
}↵
assert(s);↵
swap(A[i],A[s]);swap(B[i],B[s]);↵
const frac t=A[i][i];↵
fr(j,1,m){↵
A[i][j]=A[i][j]/t;↵
B[i][j]=B[i][j]/t;↵
}↵
fr(j,1,m)if(j!=i&&A[j][i].q){↵
const frac t=A[j][i]; ↵
fr(k,1,m){↵
A[j][k]=A[j][k]-t*A[i][k]; ↵
B[j][k]=B[j][k]-t*B[i][k]; ↵
}↵
}↵
}↵
return B;↵
}↵
vector<vector<frac> > solve(matrix A){↵
vector<vector<frac> >W;↵
rowreduce(A,m,m,0);↵
fr(i,1,m)if(!p[i]){↵
vector<frac> T;T.resize(m+1);↵
T[i]=V(1);↵
fr(j,1,m)if(to[j]&&A[j][i].q){↵
T[to[j]]=zero-A[j][i]/A[j][to[j]]; ↵
}↵
W.push_back(T);↵
}↵
return W;↵
}↵
bool noempty(frac* A){↵
fr(i,1,m)if(A[i].q)return 1;↵
return 0;↵
}↵
int main(){↵
#ifdef pig↵
freopen("pig.in","r",stdin);↵
freopen("pig.out","w",stdout);↵
#endif↵
cin>>m;↵
init();↵
matrix A;↵
fr(i,1,m)fr(j,1,m)A[i][j]=read();↵
int s;cin>>s;↵
fr(i,1,s){↵
r[i]=read();↵
scanf("%d",&d[i]);↵
}↵
matrix Q;int top=0;↵
fr(i,1,s){↵
matrix B=A-r[i]*I,C=B;↵
vector<vector<vector<frac> > > V;↵
vector<vector<frac> > P;↵
fr(j,1,d[i]){↵
vector<vector<frac> > W=solve(C); ↵
matrix A;↵
fr(k,0,P.size()-1){↵
fr(l,1,m)A[k+1][l]=P[k][l]; ↵
}↵
fr(k,0,W.size()-1){↵
fr(l,1,m){↵
A[k+P.size()+1][l]=W[k][l];↵
}↵
}↵
rowreduce(A,P.size()+W.size(),m,1);↵
vector<vector<frac> >T;↵
fr(k,P.size()+1,W.size()+P.size())if(noempty(A[k])){↵
vector<frac> TT;TT.resize(m+1);↵
fr(l,1,m)TT[l]=A[k][l];↵
T.pb(TT); ↵
}↵
V.pb(T);↵
P=W; ↵
C=C*B;↵
}↵
vector<vector<frac> >ans;↵
matrix now;int tot=0;↵
fd(j,V.size()-1,0){↵
fr(k,0,V[j].size()-1){↵
vector<frac> T; T.resize(m+1);↵
fr(l,1,m){↵
T[l]=V[j][k][l];↵
}↵
fr(l,0,j-1)T=apply(B,T);↵
tot++;↵
fr(l,1,m)now[tot][l]=T[l]; ↵
}↵
↵
rowreduce(now,tot,m,1);↵
fr(k,tot-V[j].size()+1,tot)if(noempty(now[k])){↵
vector<frac> T;T.resize(m+1);↵
fr(l,1,m)T[l]=V[j][k-(tot-V[j].size()+1)][l]; ↵
fr(t,0,j){↵
ans.pb(T);↵
T=apply(B,T);↵
}↵
}↵
}↵
fr(j,0,ans.size()-1){↵
top++;↵
fr(k,1,m)Q[k][top]=ans[j][k];↵
}↵
}↵
assert(top==m);↵
Q.out();↵
printf("\n");↵
(inverse(Q)*A*Q).out();↵
return 0;↵
}↵
```↵
↵
**Definition 1** *root subspace* for $\lambda$ is the subspace satisfying $\lambda$ $\exist k, (\mathcal{A}-\lambda\mathcal{I})^k\alpha=0$↵
↵
**Lemma 1** The sum of different root subspace is direst sum↵
↵
*proof* ↵
↵
$f(x)$ is the characteristic polynomial's factor of $\lambda_1$ , $g(x)$ is the remaining part↵
↵
Now $f(x)$ is annihilator for $W_{\lambda_1}$ ↵
because the whole characteristic polynomial is annihilator, but $g(x)$ cannot annihilate $W_{\lambda _1}$ (consider the diagonal of the matrices)↵
↵
we have $(f(x),g(x))=1$ now we claim that $g(\mathcal{A})$ is invertible. There exist $u(x)g(x)=1 \bmod f(x)$↵
↵
so $u(\mathcal{A})g(\mathcal{A})=\mathcal{I}$↵
↵
to prove $W_{\lambda_1}\oplus W_{\lambda_2}\dots\oplus W_{\lambda_t}$ we only need to prove vector $0$ have only one representation.↵
↵
say $0=u_1+u_2+\dots+u_t$ . applying $g(\mathcal{A})$ to both side yield $g(\mathcal{A})u_1=0$ . Then applying $u(\mathcal{A})$ gives the result. $\square$↵
↵
**Definition 2** *cyclic subspace* $C(\alpha)$ is the subspace generated by $\alpha \ ,\mathcal{A}\alpha,\ \mathcal{A}^2\alpha \dots$ and denote the last none zero term of the sequence $last(\alpha)$↵
↵
(it's easy to prove $\alpha \ ,\mathcal{A}\alpha,\ \mathcal{A}^2\alpha \dots$ are independent. ↵
↵
**Lemma 2** $V$ is the direct sum of some cyclic subspace↵
↵
*proof*↵
↵
we give a constructive and algorithmic proof.↵
↵
Let the degree of minimal polynomial be $d$.↵
↵
First start with solving $AX=0$ ,then $A^2X=0$ ..... $A^dX=0$ The solution space is expanding. Denote $X_i$ the set of basis that is newly inserted after solving the i-th equation.↵
↵
Denote the vectors in $X_d$ $\alpha_1,\alpha_2\dots\alpha_k$ , in $X_{d-1}$ $\beta_1,\beta_2\dots\beta_l$ in $X_{d-2}$ $\gamma_1,\gamma_2\dots\gamma_m$ ↵
↵
First we claim that $C(\alpha_1)\oplus C(\alpha_2)\dots \oplus C(\alpha_k)$ .↵
$$↵
\sum_{i,j} \mu_{ij}\mathcal{A}^j\alpha_i=0↵
$$↵
applying $\mathcal{A}^{d-1}$ to both side yields↵
$$↵
\sum_{i,j} \mu_{ij}\mathcal{A}^{j+d-1}\alpha_i=0↵
$$↵
↵
$$↵
\sum_{i} \mu_{i0}\mathcal{A}^{d-1}\alpha_i=0↵
$$↵
↵
now↵
$$↵
\sum_{i} \mu_{i0}\alpha_i↵
$$↵
is in $Ker(\mathcal{A}^{d-1})$ ,but $\alpha_i$ are newly inserted, if this is not $0$, some $\alpha$ can be represented by the basis of $Ker(\mathcal{A}^{d-1})$ ,a contradiction.↵
↵
so $\forall i,\mu_{i0}=0$ because $\alpha_i$ are linearly independent.↵
$$↵
\sum_{i\ge1,j} \mu_{ij}\mathcal{A}^j\alpha_i=0↵
$$↵
now apply $\mathcal{A}^{d-2}$ and similarly $\forall i,\mu_{i1}=0$. the remaining proof is obvious.↵
↵
At that time, we want to insert $C(\beta_i)$ but not all of them should be inserted.↵
↵
Firstly I thought if $\beta$ is linearly independent with all $\mathcal{A}\alpha$ , $C(\beta)$ and $C(\alpha)$ is direct sum. but that was wrong.↵
↵
consider the following example $A=$↵
↵
```↵
0 0 1 2 3↵
0 0 0 1 -1↵
0 0 0 1 2↵
0 0 0 0 0↵
0 0 0 0 0↵
```↵
↵
$X_1$ is↵
↵
```↵
1 0↵
0 1↵
0 0 ↵
0 0↵
0 0↵
```↵
↵
$X_2$ is↵
↵
```↵
0 0↵
0 0↵
1 0↵
0 -2↵
0 1↵
```↵
↵
$X_3$ is↵
↵
```↵
0↵
0↵
0↵
0↵
1↵
```↵
↵
↵
↵
now $\alpha$ $\mathcal{A} \alpha$ $\mathcal{A}^2 \alpha$ are↵
↵
```↵
0 3 2↵
0 -1 0↵
0 2 0↵
0 0 0↵
1 0 0↵
```↵
↵
now choose in $X_2$ $\beta =$↵
↵
```↵
0↵
0↵
1↵
0↵
0↵
```↵
↵
which is linearly independent with $\mathcal{A}\alpha$ but $\mathcal{A}\beta=$↵
↵
```↵
1↵
0↵
0↵
0↵
0↵
```↵
↵
is linearly independent with $\mathcal{A}^2 \alpha$↵
↵
so it occurred to me that I should maintain a linearly independent kernel. ↵
$$↵
\sum_{i,j} \mu_{ij}\mathcal{A}^j\alpha_i+\sum_{i,j}\lambda_{ij}\mathcal{A}^j\beta_i=0↵
$$↵
apply $\mathcal{A}^{d-1}$ we have.↵
$$↵
\sum_{i\ge1,j} \mu_{ij}\mathcal{A}^j\alpha_i+\sum_{i,j}\lambda_{ij}\mathcal{A}^j\beta_i=0↵
$$↵
now apply $\mathcal{A}^{d-2}$↵
$$↵
\sum_{i\ge1} \mu_{i,1}\mathcal{A}^{d-1}\alpha_i+\sum_{i}\lambda_{i,0}\mathcal{A}^{d-2}\beta_i=0↵
$$↵
because the $\beta$ we choose ($\beta$ here is not all the $\beta$ )to add here satisfy $last(\beta)$ is linearly independent with $last(\alpha)$ ↵
↵
so $\forall i, \mu_{i,1}=\lambda_{i,0}=0$ continue the process, we can prove we get some direct sum of cyclic subspace.↵
↵
but is the sum the complete space $V$ ?↵
↵
Note that originally $X_1, X_2 \dots$ are a basis.↵
↵
when we come to the k-th layer(corresponding to inserting $X_k$) , we can consider this algorithm as substituting some vectors in $X_k$ with the previously inserted vectors. For example, use $\mathcal{A} \alpha$ to change out some $\beta$ . Because originally $last(X_{d-1})$ is linearly independent with size $|X_{d-1}|=|last(X_{d-1})|$ , finally the vectors in the answer set form a set with size $|last(X_{d-1})|$ too.(the basis of a space is a fixed number).↵
↵
So finally we will get a set with size $|X_{d-1}|$ in place of $X_{d-1}$. For $X_k$ it is similar. $\square$↵
↵
**Theorem** There is a basis under which the matrix is in Jordan form.↵
↵
*proof* ↵
↵
For every eigenvalue, run algorithm of lemma 2. And the union of vectors is a Jordan basis.↵
↵
Furthermore, it is easy to see that the number of different size of Jordan square is determined by the solution of $(A-\lambda^kI)X=0$ so it is determined by $rank(A-\lambda I)^k$ . Which is invariant for similar relation.↵
↵
So Jordan form is canonical form of similar matrices. $\square$↵
↵
**Corollary** Jordan form and its transfer matrix can be computed in $O(n^4)$.↵
↵
*proof*↵
↵
Computing the solution for $A^kX=0$ need $Cn^4$ operations if implemented using ordinary method.↵
↵
Computing the chain of a vector $\alpha$ (the space $C(\alpha)$) need $C\sum d_i\times n^2=Cn^3$. Maintaining the kernel need $C\sum d_i^3=O(n^3)$↵
↵
So the complexity is $O(n^4)$ $\square$↵
↵
↵
↵
This method is a clear and straightforward geometry method. It is easy to implement compared to algebraic method of $\lambda$-matrix. And the proof of lemma 2 is different from classical textbook because I want to prove the correctness of the algorithm.↵
↵
>There are better algorithms for computing Jordan form. For example, *An $O(n^3)$ Algorithm for the Frobenius Normal Form* Storjohann 1998 is an easy faster way.↵
>↵
>I did not find a fast algorithm that can compute transfer matrix of Jordan form online.↵
>↵
>but use idea of some reduction. It may be done with better complexity.↵
↵
↵
↵
The code below needs eigenvalues.↵
↵
```cpp↵
#include<bits/stdc++.h>↵
#define de fprintf(stderr,"on-%d\n",__LINE__)↵
#define pb push_back↵
#define fr(i,a,b) for(int i(a),end##i(b);i<=end##i;i++)↵
#define fd(i,a,b) for(int i(a),end##i(b);i>=end##i;i--)↵
#define reduce Reduce↵
#define apply Apply↵
using namespace std;↵
const int N=30;↵
int m;↵
struct frac{↵
int q,p;↵
frac(){↵
q=0;p=1;↵
}↵
void out(){↵
if(p==1)printf("%7d ",q);↵
else printf("%3d/%3d ",q,p);↵
}↵
};↵
frac zero;↵
frac make(int x,int y){↵
frac A;↵
A.q=x;A.p=y;↵
return A; ↵
}↵
frac r[N];↵
int d[N];↵
frac V(int x){↵
return make(x,1); ↵
}↵
frac read(){↵
int x;scanf("%d",&x);↵
return V(x); ↵
}↵
int gcd(int x,int y){↵
if(!x)return y;↵
return gcd(y%x,x);↵
}↵
frac reduce(frac &A){↵
int g=gcd(A.p,A.q); ↵
A.p/=g;A.q/=g;↵
if(A.p<0)A.p=-A.p,A.q=-A.q;↵
return A;↵
}↵
frac reduce(frac A){↵
int g=gcd(A.p,A.q);↵
A.p/=g;A.q/=g;↵
if(A.p<0)A.p=-A.p,A.q=-A.q;↵
return A;↵
}↵
frac operator +(const frac &A,const frac &B){↵
return reduce(make(A.q*B.p+B.q*A.p,A.p*B.p)); ↵
}↵
frac operator -(const frac &A,const frac &B){↵
return reduce(make(A.q*B.p-B.q*A.p,A.p*B.p)); ↵
}↵
frac operator *(const frac &A,const frac &B){↵
assert(A.p);↵
return reduce(make(A.q*B.q,A.p*B.p));↵
}↵
frac operator /(const frac &A,const frac &B){↵
return reduce(make(A.q*B.p,A.p*B.q));↵
}↵
struct matrix{↵
frac A[N][N];↵
frac* operator [](int x){return A[x];}↵
void out(){↵
fr(i,1,m){↵
fr(j,1,m)A[i][j].out();↵
printf("\n");↵
}↵
}↵
};↵
matrix I; ↵
void init(){↵
fr(i,1,m)fr(j,1,m)I[i][j]=V(i==j);↵
}↵
matrix operator *(matrix A,matrix B){↵
matrix C;↵
fr(i,1,m)fr(j,1,m){↵
C[i][j]=V(0);↵
fr(k,1,m)C[i][j]=C[i][j]+A[i][k]*B[k][j];↵
}↵
return C;↵
}↵
matrix operator *(frac v,matrix A){↵
fr(i,1,m)fr(j,1,m)A[i][j]=v*A[i][j];↵
return A;↵
}↵
matrix operator +(matrix A,matrix B){↵
fr(i,1,m)fr(j,1,m)A[i][j]=A[i][j]+B[i][j];↵
return A;↵
}↵
matrix operator -(matrix A,matrix B){↵
fr(i,1,m)fr(j,1,m)A[i][j]=A[i][j]-B[i][j];↵
return A;↵
}↵
vector<frac> apply(matrix &A,const vector<frac>& B){↵
vector<frac> C;C.resize(m+1);↵
fr(i,1,m)fr(k,1,m){↵
C[i]=C[i]+A[i][k]*B[k]; ↵
}↵
return C;↵
}↵
bool p[N];↵
int to[N];↵
void rowreduce(matrix &A,int n,int m,int op=0){↵
fr(i,1,m)to[i]=p[i]=0;↵
fr(i,1,n){↵
int s=0;↵
fr(j,1,m)if(!p[j]&&A[i][j].q){↵
s=j;break; ↵
}↵
if(!s)continue;↵
to[i]=s;↵
p[s]=1;↵
fr(j,op*i+1,n)if(j!=i&&A[j][s].q){↵
frac t=A[j][s]/A[i][s]; ↵
fr(k,1,m)A[j][k]=A[j][k]-t*A[i][k]; ↵
}↵
}↵
}↵
void swap(frac* A,frac *B){↵
fr(i,1,m)swap(A[i],B[i]); ↵
}↵
matrix inverse(matrix A){↵
matrix B=I;↵
fr(i,1,m){↵
int s=0;↵
fr(j,i,m)if(A[j][i].q){↵
s=j;break; ↵
}↵
assert(s);↵
swap(A[i],A[s]);swap(B[i],B[s]);↵
const frac t=A[i][i];↵
fr(j,1,m){↵
A[i][j]=A[i][j]/t;↵
B[i][j]=B[i][j]/t;↵
}↵
fr(j,1,m)if(j!=i&&A[j][i].q){↵
const frac t=A[j][i]; ↵
fr(k,1,m){↵
A[j][k]=A[j][k]-t*A[i][k]; ↵
B[j][k]=B[j][k]-t*B[i][k]; ↵
}↵
}↵
}↵
return B;↵
}↵
vector<vector<frac> > solve(matrix A){↵
vector<vector<frac> >W;↵
rowreduce(A,m,m,0);↵
fr(i,1,m)if(!p[i]){↵
vector<frac> T;T.resize(m+1);↵
T[i]=V(1);↵
fr(j,1,m)if(to[j]&&A[j][i].q){↵
T[to[j]]=zero-A[j][i]/A[j][to[j]]; ↵
}↵
W.push_back(T);↵
}↵
return W;↵
}↵
bool noempty(frac* A){↵
fr(i,1,m)if(A[i].q)return 1;↵
return 0;↵
}↵
int main(){↵
#ifdef pig↵
freopen("pig.in","r",stdin);↵
freopen("pig.out","w",stdout);↵
#endif↵
cin>>m;↵
init();↵
matrix A;↵
fr(i,1,m)fr(j,1,m)A[i][j]=read();↵
int s;cin>>s;↵
fr(i,1,s){↵
r[i]=read();↵
scanf("%d",&d[i]);↵
}↵
matrix Q;int top=0;↵
fr(i,1,s){↵
matrix B=A-r[i]*I,C=B;↵
vector<vector<vector<frac> > > V;↵
vector<vector<frac> > P;↵
fr(j,1,d[i]){↵
vector<vector<frac> > W=solve(C); ↵
matrix A;↵
fr(k,0,P.size()-1){↵
fr(l,1,m)A[k+1][l]=P[k][l]; ↵
}↵
fr(k,0,W.size()-1){↵
fr(l,1,m){↵
A[k+P.size()+1][l]=W[k][l];↵
}↵
}↵
rowreduce(A,P.size()+W.size(),m,1);↵
vector<vector<frac> >T;↵
fr(k,P.size()+1,W.size()+P.size())if(noempty(A[k])){↵
vector<frac> TT;TT.resize(m+1);↵
fr(l,1,m)TT[l]=A[k][l];↵
T.pb(TT); ↵
}↵
V.pb(T);↵
P=W; ↵
C=C*B;↵
}↵
vector<vector<frac> >ans;↵
matrix now;int tot=0;↵
fd(j,V.size()-1,0){↵
fr(k,0,V[j].size()-1){↵
vector<frac> T; T.resize(m+1);↵
fr(l,1,m){↵
T[l]=V[j][k][l];↵
}↵
fr(l,0,j-1)T=apply(B,T);↵
tot++;↵
fr(l,1,m)now[tot][l]=T[l]; ↵
}↵
↵
rowreduce(now,tot,m,1);↵
fr(k,tot-V[j].size()+1,tot)if(noempty(now[k])){↵
vector<frac> T;T.resize(m+1);↵
fr(l,1,m)T[l]=V[j][k-(tot-V[j].size()+1)][l]; ↵
fr(t,0,j){↵
ans.pb(T);↵
T=apply(B,T);↵
}↵
}↵
}↵
fr(j,0,ans.size()-1){↵
top++;↵
fr(k,1,m)Q[k][top]=ans[j][k];↵
}↵
}↵
assert(top==m);↵
Q.out();↵
printf("\n");↵
(inverse(Q)*A*Q).out();↵
return 0;↵
}↵
```↵