Need help for combinatorics problem !!
Difference between en2 and en3, changed 0 character(s)
You are given an integer $n \leq 10^9$. Your task is to compute the number of ways $n$ can be expressed as the sum of even numbers. Since the answer could be very large, compute it modulo $10^9 + 7$.↵

**Sample** : $n = 8$↵

$8 = 6 + 2$↵

$8 = 4 + 4$↵

$8 = 4 + 2 + 2$↵

$8 = 2 + 2 + 2 + 2$↵

Therefore for $n = 8$ the answer would be $4$↵

**Do anyone know how to solve this problem? Comment on the solution**↵


History

 
 
 
 
Revisions
 
 
  Rev. Lang. By When Δ Comment
en5 English __fn__ 2023-12-12 14:45:44 670 Tiny change: 'ith $n < 2*10^5$\n</s' -> 'ith $n < 2.10^5$\n</s'
en4 English __fn__ 2023-12-07 17:20:22 23 Tiny change: ' + 7$.\n\n**Samp' -> ' + 7$.\n\n$Time limit : 1s$\n\n**Samp'
en3 English __fn__ 2023-12-07 14:47:59 0 (published)
en2 English __fn__ 2023-12-07 14:45:50 16 (saved to drafts)
en1 English __fn__ 2023-12-07 14:04:34 447 Initial revision (published)