Is O(n * sqrt(n * a (n)) possible?

Правка en2, от rand, 2024-12-04 20:40:28

Hi codeforces!

I recently wrote sqrt-decomposition + dsu, and I only had to use snm if the query contains the whole block. What would be the asymptotics of this solution?

It may seem obvious to you that the asymptotics will be $$$O(n \cdot \sqrt{n \cdot \varphi^{-1} {(n)}})$$$ ($$$\varphi^{-1} {(n)}$$$ — the inverse Ackerman function).

But in fact the asymptotics is — $$$O(n \cdot B \cdot \varphi^{-1}{(n)} + \frac{n ^ 2}{B})$$$ ($$$B$$$ — block size) and in order to achieve the asymptotics with an accreman under the sqrt we need to know $$$\varphi^{-1}{(n)}$$$ to put $$$B = \sqrt{n * \varphi^{-1}{-1} {(n)}}$$$, and to do that we need to know $$$\varphi^{-1} {(n)}$$$. So it comes down to a quick calculation of $$$\varphi^{-1} {(n)}$$$. Is it possible to do this?

Теги dsu, sqrt_decomposition, asymptotics, theoretical

История

 
 
 
 
Правки
 
 
  Rev. Язык Кто Когда Δ Комментарий
en2 Английский rand 2024-12-04 20:40:28 1 Tiny change: 'arphi^{-1}} {(n)}})$' -> 'arphi^{-1} {(n)}})$'
en1 Английский rand 2024-12-04 20:39:27 803 Initial revision for English translation
ru2 Русский rand 2024-12-04 20:35:18 15 Мелкая правка: 'жно знать a(n), чтобы по' -> 'жно знать $\varphi^{-1}{(n)}$, чтобы по'
ru1 Русский rand 2024-12-04 20:31:20 797 Первая редакция (опубликовано)