Sum Of Number Of Divisors Of Divisors Of A Number
Difference between en1 and en2, changed 41 character(s)
What is the maximumsum of number of divisors of divisors of number which is smaller than $n$, such that sum of number of divisors of divisors of this number is maximum?↵

For example, ↵

$g(n)$ = $number$ $of$ $divisors$ $of$ $n$↵

$f(12)$ = $g(1) + g(2) + g(3) + g(4) + g(6) + g(12)$↵

$f(12)$ = $(1) + (2) + (2) + (3) + (4) + (6)$ = $18$↵

Can you help about it?

History

 
 
 
 
Revisions
 
 
  Rev. Lang. By When Δ Comment
en6 English kalimm 2015-11-22 13:05:42 3 Tiny change: '6)$ = $18$\n\nCan yo' -> '6)$ = $18$ \n\nCan yo'
en5 English kalimm 2015-11-12 13:13:42 9 Tiny change: ' example, \n\n$g(n)' -> ' example, \n\n$g(n)'
en4 English kalimm 2015-11-10 17:03:51 4 Tiny change: '$ $of$ $n$\n\n$f(12)' -> '$ $of$ $n$ \n\n$f(12)'
en3 English kalimm 2015-11-09 15:05:04 2 Tiny change: ') + g(12)$\n\n$f(12)' -> ') + g(12)$ \n\n$f(12)'
en2 English kalimm 2015-11-08 22:26:43 41
en1 English kalimm 2015-11-08 13:20:38 378 Initial revision (published)