982A - Row
И двух, описанных в условии правил, следует, что рассадка является <<максимальной>> тогда, когда в ней не встречаются две единички рядом или три нолика. Также необходимо аккуратно обработать концы данного ряда — надо проверить, что нельзя посадить человека на самый правый или самый левый стул.
982B - Bus of Characters
Заметим, что финальные пары интроверт-экстраверт определяются однозначно, а также, что с помощью стека, можно восстановить, какой экстраверт к какому интроверту подсядет (заметим, что нолики единички будут образовывать правильную скобочную последовательность). Тогда одним из решений может быть такое:
- Сортируем массив длин рядов по возрастанию
- Для каждого интроверта пишем номер очередного свободна ряда и добавляем его в стек
- Для каждого экстраверта пишем последнее число из стека и удаляем его оттуда
982C - Cut 'em all!
Заметим, что если есть какое-то ребро, которое можно удалить, то мы можем сделать это, без каких-либо последствий. Рассмотрим такое ребро, что в одном из полученных поддеревьев уже точно нельзя удалить больше, а его удаление возможно. Что произойдет, если мы его оставим в дереве? Относительно другого конца ребра четность поддерева не изменилась, что означает, что на дальнейшие удаления это ребро не повлияло. А значит, если мы его удалим, то ответ улучшится. Отсюда следует жадное решение: в дфс-е насчитываем для каждой вершины размер поддерева, включая текущую вершину, и если он четен, то ребро в потомка (если он существует), можно удалить.
982D - Shark
Давайте посортируем массив и будем вставлять числа в порядке сортировки от меньшего к большему. Используя структуру данных "Система непересекающихся множеств" можно легко поддерживать информацию о текущем количестве отрезков, а также используя map внутри функции объединения, и информацию о текущих размерах отрезков (локаций). Тогда остается лишь обновлять ответ, когда это требуется.