982A - Ряд
И двух, описанных в условии правил, следует, что рассадка является <<максимальной>> тогда, когда в ней не встречаются две единички рядом или три нолика. Также необходимо аккуратно обработать концы данного ряда — надо проверить, что нельзя посадить человека на самый правый или самый левый стул.
982B - Автобус характеров
Заметим, что финальные пары интроверт-экстраверт определяются однозначно, а также, что с помощью стека, можно восстановить, какой экстраверт к какому интроверту подсядет (заметим, что нолики единички будут образовывать правильную скобочную последовательность). Тогда одним из решений может быть такое:
- Сортируем массив длин рядов по возрастанию
- Для каждого интроверта пишем номер очередного свободна ряда и добавляем его в стек
- Для каждого экстраверта пишем последнее число из стека и удаляем его оттуда
982C - Удали их всех!
Заметим, что если есть какое-то ребро, которое можно удалить, то мы можем сделать это, без каких-либо последствий. Рассмотрим такое ребро, что в одном из полученных поддеревьев уже точно нельзя удалить больше, а его удаление возможно. Что произойдет, если мы его оставим в дереве? Относительно другого конца ребра четность поддерева не изменилась, что означает, что на дальнейшие удаления это ребро не повлияло. А значит, если мы его удалим, то ответ улучшится. Отсюда следует жадное решение: в дфс-е насчитываем для каждой вершины размер поддерева, включая текущую вершину, и если он четен, то ребро в потомка (если он существует), можно удалить.
982D - Акула
Давайте посортируем массив и будем вставлять числа в порядке сортировки от меньшего к большему. Используя структуру данных "Система непересекающихся множеств" можно легко поддерживать информацию о текущем количестве отрезков, а также используя map внутри функции объединения, и информацию о текущих размерах отрезков (локаций). Тогда остается лишь обновлять ответ, когда это требуется.
984E - Лифт
Если симметрично отражать прямоугольник на плоскости относительно своих сторон, то новая траектория движения шара окажется куда проще. А именно — прямой. Одно из возможных решений такое:
- Если вектор направлен под углом в 90 градусов к осям, то пишем if-ы.
- Иначе поворачиваем поле таким образом, чтобы вектор удара стал (1, 1).
- Выписываем уравнение прямой движения шара — – 1·x + 1·y + С = 0. Если подставим изначальное положение шара, то найдем коэффициент C.
- Заметим, что в бессконечно замощенной плоскости координаты любой лузы представимы в виде (k1·n, k2·m).
- Подставим координаты лузы в уравнение прямой шара. Получается диофантово уравнение A·k1 + B·k2 = C. Оно разрешимо в случае, если
Unable to parse markup [type=CF_TEX]
. В противном случае решений нет. - Из всех решений данного диофантово уравнения нас интересует наименьшее на положительной полуоси.