How to solve this problem using matrix exponentiation. The recurrence relation is :
f(n, k, 0) = 2 * f(n - 1, k, 1) + f(n - 1, k, 0)
f(n, k, 1) = f(n - 1, k, 1) + f(n - 1, k, 0)
1 < n < 1e9
1 < k < 1e3
# | User | Rating |
---|---|---|
1 | tourist | 3985 |
2 | jiangly | 3814 |
3 | jqdai0815 | 3682 |
4 | Benq | 3529 |
5 | orzdevinwang | 3526 |
6 | ksun48 | 3517 |
7 | Radewoosh | 3410 |
8 | hos.lyric | 3399 |
9 | ecnerwala | 3392 |
9 | Um_nik | 3392 |
# | User | Contrib. |
---|---|---|
1 | cry | 169 |
2 | maomao90 | 162 |
2 | Um_nik | 162 |
4 | atcoder_official | 160 |
5 | djm03178 | 158 |
5 | -is-this-fft- | 158 |
7 | adamant | 155 |
8 | Dominater069 | 154 |
9 | awoo | 152 |
10 | luogu_official | 151 |
Problem BBRICKS from Codechef Long challenge
How to solve this problem using matrix exponentiation. The recurrence relation is :
f(n, k, 0) = 2 * f(n - 1, k, 1) + f(n - 1, k, 0)
f(n, k, 1) = f(n - 1, k, 1) + f(n - 1, k, 0)
1 < n < 1e9
1 < k < 1e3
Name |
---|