How to count number of squares posible in a m*n grid.
I know formula to count squares which are parallel to given grid. i.e. m*(m+1)*(2m+1)/6 + (n-m)*m*(m+1)/2;
but how to do it for squares which are not parallel to given grid. How to count them??
# | User | Rating |
---|---|---|
1 | tourist | 3985 |
2 | jiangly | 3741 |
3 | jqdai0815 | 3682 |
4 | Benq | 3529 |
5 | orzdevinwang | 3526 |
6 | ksun48 | 3489 |
7 | Radewoosh | 3483 |
8 | Kevin114514 | 3442 |
9 | ecnerwala | 3392 |
9 | Um_nik | 3392 |
# | User | Contrib. |
---|---|---|
1 | cry | 169 |
2 | atcoder_official | 162 |
2 | maomao90 | 162 |
2 | Um_nik | 162 |
5 | djm03178 | 158 |
6 | -is-this-fft- | 157 |
7 | adamant | 155 |
8 | awoo | 154 |
8 | Dominater069 | 154 |
10 | nor | 150 |
Help in this Geometrical (counting) concept..
How to count number of squares posible in a m*n grid.
I know formula to count squares which are parallel to given grid. i.e. m*(m+1)*(2m+1)/6 + (n-m)*m*(m+1)/2;
but how to do it for squares which are not parallel to given grid. How to count them??
Name |
---|