plz help a newbie ..to find a runtime error in given problem MONITOR codeforces beta round16

Revision en1, by GuptaJi, 2020-09-04 12:34:57

import java.util.*; import java.lang.*; import java.io.*; import java.awt.Point;

// SHIVAM GUPTA : //NSIT //decoder_1671 //BEING PERFECTIONIST IS NOT AN OPTION. // YOUR LOVE MAKE ME STRONGER BUT UR HATE MAKES ME STRONGEST ... NOW ITS UR CHOICE.......... // STOP NOT TILL IT IS DONE OR U DIE . //EITHER MAKE IT OR BREAK IT. //NEVER UNDERESTIMATE URSELF. // U KNOW THAT IF THIS DAY WILL BE URS THEN NO ONE CAN DEFEAT U HERE................ //MIRACLE HAPPENS .....BUT IT HAPPENS ...

// ASCII = 48 + i ;

// 2^28 = 268,435,456 > 2* 10^8

// log 10 base 2 = 3.3219

// odd:: (x^2+1)/2 , (x^2-1)/2 ; x>=3

// even:: (x^2/4)+1 ,(x^2/4)-1 x >=4

// FOR ANY ODD NO N : N,N-1,N-2 //ALL ARE PAIRWISE COPRIME //THEIR COMBINED LCM IS PRODUCT OF ALL THESE NOS

// two consecutive odds are always coprime to each other

// two consecutive even have always gcd = 2 ;

/* Name of the class has to be "Main" only if the class is public. */

public class Main {

// static int[] arr = new int[100002] ; 
// static int[] dp = new int[100002] ;  

 static PrintWriter out;

static class FastReader{
    BufferedReader br;
    StringTokenizer st;
    public FastReader(){
       br=new BufferedReader(new InputStreamReader(System.in));
       out=new PrintWriter(System.out);
    }
    String next(){
       while(st==null || !st.hasMoreElements()){
         try{
          st= new StringTokenizer(br.readLine());
         }
         catch (IOException e){
          e.printStackTrace();
         }
       }
       return st.nextToken();
    }
    int nextInt(){
       return Integer.parseInt(next());
    }
    long nextLong(){
       return Long.parseLong(next());
    }
    double nextDouble(){
       return Double.parseDouble(next());
    }
    String nextLine(){
       String str = "";
       try{
         str=br.readLine();
       }
       catch(IOException e){
         e.printStackTrace();
       }
       return str;
    }
}

//////////////////////////////////////////////////////////////////////////////////// public static int countDigit(long n) { return (int)Math.floor(Math.log10(n) + 1); }

/////////////////////////////////////////////////////////////////////////////////////////

public static int sumOfDigits(long n) {

if( n< 0)return -1 ;

int sum = 0;

while( n > 0) { sum = sum + (int)( n %10) ;

n /= 10 ;

}

return sum ;

}

//////////////////////////////////////////////////////////////////////////////////////////////////

public static long arraySum(int[] arr , int start , int end) { long ans = 0 ;

for(int i = start ; i <= end  ; i++)ans += arr[i] ;

return ans  ;

}

/////////////////////////////////////////////////////////////////////////////////

public static int mod(int x) { if(x <0)return -1*x ; else return x ; } public static long mod(long x) { if(x <0)return -1*x ; else return x ; }

////////////////////////////////////////////////////////////////////////////////

public static void swapArray(int[] arr , int start , int end) { while(start < end) { int temp = arr[start] ; arr[start] = arr[end]; arr[end] = temp; start++ ;end-- ; } }

//////////////////////////////////////////////////////////////////////////////////

public static int[][] rotate(int[][] input){

int n =input.length; int m = input[0].length ; int[][] output = new int [m][n];

for (int i=0; i<n; i++) for (int j=0;j<m; j++) output [j][n-1-i] = input[i][j]; return output; } ///////////////////////////////////////////////////////////////////////////////////////////////////////

public static int countBits(long n) {
int count = 0; while (n != 0) { count++; n = (n) >> (1L) ; }

return count;   

}

/////////////////////////////////////////// ////////////////////////////////////////////////

public static boolean isPowerOfTwo(long n) { if(n==0) return false;

if(((n ) & (n-1)) == 0 ) return true ; else return false ;

}

/////////////////////////////////////////////////////////////////////////////////////

public static int min(int a ,int b , int c, int d) { int[] arr = new int[4] ; arr[0] = a;arr[1] = b ;arr[2] = c;arr[3] = d;Arrays.sort(arr) ;

return arr[0];

} ///////////////////////////////////////////////////////////////////////////// public static int max(int a ,int b , int c, int d) { int[] arr = new int[4] ; arr[0] = a;arr[1] = b ;arr[2] = c;arr[3] = d;Arrays.sort(arr) ;

return arr[3];

}

///////////////////////////////////////////////////////////////////////////////////

public static String reverse(String input) { StringBuilder str = new StringBuilder("") ;

for(int i =input.length()-1 ; i >= 0  ; i-- )
{
    str.append(input.charAt(i));
}

return str.toString() ; } ///////////////////////////////////////////////////////////////////////////////////////////

public static boolean sameParity(long a ,long b ) { long x = a% 2L; long y = b%2L ; if(x==y)return true ; else return false ; }

//////////////////////////////////////////////////////////////////////////////////////////////////// public static boolean isPossibleTriangle(int a ,int b , int c) { if( a + b > c && c+b > a && a +c > b)return true ; else return false ; }

//////////////////////////////////////////////////////////////////////////////////////////// static long xnor(long num1, long num2) { if (num1 < num2) { long temp = num1; num1 = num2; num2 = temp; } num1 = togglebit(num1); return num1 ^ num2; }

static long togglebit(long n) {
    if (n == 0)
       return 1;
    long i = n;
    n |= n >> 1;
    n |= n >> 2;
    n |= n >> 4;
    n |= n >> 8;
    n |= n >> 16;
    return i ^ n;
}

///////////////////////////////////////////////////////////////////////////////////////////////

public static int xorOfFirstN(int n) {

if( n % 4 ==0)return n ;

else if( n % 4 == 1)return 1 ;

else if( n % 4 == 2)return n+1 ;

else return 0 ;

} //////////////////////////////////////////////////////////////////////////////////////////////

public static int gcd(int a, int b ) {

if(b==0)return a ;

else return gcd(b,a%b) ;

}

public static long gcd(long a, long b ) {

if(b==0)return a ;

else return gcd(b,a%b) ;

}

////////////////////////////////////////////////////////////////////////////////////

public static int lcm(int a, int b ,int c , int d ) {

int temp = lcm(a,b , c) ;

int ans = lcm(temp ,d ) ;

return ans ;

}

///////////////////////////////////////////////////////////////////////////////////////////

public static int lcm(int a, int b ,int c ) {

int temp = lcm(a,b) ;

int ans = lcm(temp ,c) ;

return ans ;

}

////////////////////////////////////////////////////////////////////////////////////////

public static int lcm(int a , int b ) {

int gc = gcd(a,b);

return (a*b)/gc ; }

public static long lcm(long a , long b ) {

long gc = gcd(a,b);

return (a*b)/gc ; }

/////////////////////////////////////////////////////////////////////////////////////////// static boolean isPrime(long n) { if(n==1) { return false ; }

boolean ans =  true  ;

  for(long i = 2L; i*i <= n ;i++)
  {
        if(n% i ==0)
        {
              ans = false  ;break ;
        }
  }


  return ans  ;

}
///////////////////////////////////////////////////////////////////////////

static int sieve = 1000000 ;

static boolean[] prime = new boolean[sieve + 1] ;

public static void sieveOfEratosthenes() { // FALSE == prime

// TRUE ==  COMPOSITE

    // FALSE== 1


    // time complexity = 0(NlogLogN)== o(N)

    // gives prime nos bw 1 to N

    for(int i = 4; i<= sieve ; i++)
    {
        prime[i] = true  ;
        i++ ;
    }

    for(int p = 3; p*p <= sieve; p++) 
    { 

        if(prime[p] == false) 
        { 

            for(int i = p*p; i <= sieve; i += p) 
                prime[i] = true; 
        } 

        p++ ;
    } 




}

///////////////////////////////////////////////////////////////////////////////////

public static void sortD(int[] arr , int s , int e) { sort(arr ,s , e) ;

int i =s ; int j = e  ;

  while( i < j)
  {
        int temp = arr[i] ;
        arr[i] =arr[j] ;
        arr[j] = temp ;
        i++ ; j-- ;
  }



  return ;

}

/////////////////////////////////////////////////////////////////////////////////////////

public static long countSubarraysSumToK(long[] arr ,long sum ) { HashMap<Long,Long> map = new HashMap<>() ;

int n = arr.length ;

  long prefixsum = 0 ;

  long count = 0L ;
  for(int i  = 0; i < n ; i++)
  {
      prefixsum  = prefixsum +  arr[i] ;

      if(sum == prefixsum)count = count+1 ;

      if(map.containsKey(prefixsum -sum))
      {
          count = count + map.get(prefixsum -sum) ;
      }


      if(map.containsKey(prefixsum ))
      {
          map.put(prefixsum , map.get(prefixsum) +1 );
      }

      else{
          map.put(prefixsum , 1L );
      }


  }



  return count  ;  

}

///////////////////////////////////////////////////////////////////////////////////////////////

// KMP ALGORITHM : TIME COMPL:O(N+M) // FINDS THE OCCURENCES OF PATTERN AS A SUBSTRING IN STRING //RETURN THE ARRAYLIST OF INDEXES // IF SIZE OF LIST IS ZERO MEANS PATTERN IS NOT PRESENT IN STRING

public static ArrayList kmpAlgorithm(String str , String pat) { ArrayList list =new ArrayList<>();

int n = str.length() ;
    int m = pat.length() ;

    String q = pat + "#" + str ;

    int[] lps  =new int[n+m+1] ;

     longestPefixSuffix(lps, q,(n+m+1)) ;


     for(int i =m+1 ; i < (n+m+1) ; i++ )
     {
         if(lps[i] == m)
         {
             list.add(i-2*m) ;
         }
     }

    return list ; 


}

public static void longestPefixSuffix(int[] lps ,String str , int n) { lps[0] = 0 ;

for(int i = 1  ; i<= n-1; i++)
    {
      int l = lps[i-1] ;

      while( l > 0 && str.charAt(i) != str.charAt(l))
      {
          l = lps[l-1] ;
      }

      if(str.charAt(i) == str.charAt(l))
      {
          l++ ;
      }


      lps[i] = l ; 
    }

}

/////////////////////////////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////////////////////////////

// CALCULATE TOTIENT Fn FOR ALL VALUES FROM 1 TO n // TOTIENT(N) = count of nos less than n and grater than 1 whose gcd with n is 1 // or n and the no will be coprime in nature //time : O(n*(log(logn)))

public static void eulerTotientFunction(int[] arr ,int n )
{

  for(int i = 1; i <= n  ;i++)arr[i] =i  ;


  for(int i= 2 ; i<= n ;i++)
  {
      if(arr[i] == i)
      {
          arr[i] =i-1 ;

          for(int j =2*i ; j<= n  ; j+= i )
          {
              arr[j] = (arr[j]*(i-1))/i ;
          }

      }
  }

  return  ;  

}

///////////////////////////////////////////////////////////////////////////////////////////// public static long nCr(int n,int k) { long ans=1L; k=k>n-k?n-k:k; int j=1; for(;j<=k;j++,n--) { if(n%j==0) { ans*=n/j; }else if(ans%j==0) { ans=ans/j*n; }else { ans=(ans*n)/j; } } return ans; }

///////////////////////////////////////////////////////////////////////////////////////////

public static ArrayList allFactors(int n) {
ArrayList list = new ArrayList<>() ;

for(int i = 1; i*i <= n ;i++)
{
      if( n % i == 0)
      {
          if(i*i == n)
          {
                list.add(i) ;
          }
          else{
                list.add(i) ;
                list.add(n/i) ;

          }
      }
}

 return list ;

}

public static ArrayList allFactors(long n) {
ArrayList list = new ArrayList<>() ;

for(long i = 1L; i*i <= n ;i++)
{
      if( n % i == 0)
      {
          if(i*i == n)
          {
                list.add(i) ;
          }
          else{
                list.add(i) ;
                list.add(n/i) ;

          }
      }
}

 return list ;

} ////////////////////////////////////////////////////////////////////////////////////////////////////

static final int MAXN = 10000001;

static int spf[] = new int[MAXN]; 

static void sieve() 
{ 
    spf[1] = 1; 
    for (int i=2; i<MAXN; i++) 


        spf[i] = i; 


    for (int i=4; i<MAXN; i+=2) 
        spf[i] = 2; 

    for (int i=3; i*i<MAXN; i++) 
    { 

        if (spf[i] == i) 
        { 

            for (int j=i*i; j<MAXN; j+=i) 

                if (spf[j]==j) 
                    spf[j] = i; 
        } 
    } 
}

// The above code works well for n upto the order of 10^7. // Beyond this we will face memory issues.

// Time Complexity: The precomputation for smallest prime factor is done in O(n log log n) // using sieve. // Where as in the calculation step we are dividing the number every time by // the smallest prime number till it becomes 1. // So, let’s consider a worst case in which every time the SPF is 2 . // Therefore will have log n division steps.

// Hence, We can say that our Time Complexity will be O(log n) in worst case.

static Vector<Integer> getFactorization(int x) 
{ 
    Vector<Integer> ret = new Vector<>(); 
    while (x != 1) 
    { 
        ret.add(spf[x]); 
        x = x / spf[x]; 
    } 
    return ret; 
}

////////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////////////

public static void merge(int arr[], int l, int m, int r) { // Find sizes of two subarrays to be merged int n1 = m — l + 1; int n2 = r — m;

/* Create temp arrays */
    int L[] = new int[n1];
    int R[] = new int[n2];

    /*Copy data to temp arrays*/
    for (int i=0; i<n1; ++i)
        L[i] = arr[l + i];
    for (int j=0; j<n2; ++j)
        R[j] = arr[m + 1+ j];


    /* Merge the temp arrays */

    // Initial indexes of first and second subarrays
    int i = 0, j = 0;

    // Initial index of merged subarry array
    int k = l;
    while (i < n1 && j < n2)
    {
        if (L[i] <= R[j])
        {
            arr[k] = L[i];
            i++;
        }
        else
        {
            arr[k] = R[j];
            j++;
        }
        k++;
    }

    /* Copy remaining elements of L[] if any */
    while (i < n1)
    {
        arr[k] = L[i];
        i++;
        k++;
    }

    /* Copy remaining elements of R[] if any */
    while (j < n2)
    {
        arr[k] = R[j];
        j++;
        k++;
    }
}

// Main function that sorts arr[l..r] using
// merge()

public static void sort(int arr[], int l, int r) { if (l < r) { // Find the middle point int m = (l+r)/2;

// Sort first and second halves
        sort(arr, l, m);
        sort(arr , m+1, r);

        // Merge the sorted halves
        merge(arr, l, m, r);
    }
}

public static void sort(long arr[], int l, int r) { if (l < r) { // Find the middle point int m = (l+r)/2;

// Sort first and second halves
        sort(arr, l, m);
        sort(arr , m+1, r);

        // Merge the sorted halves
        merge(arr, l, m, r);
    }
}

public static void merge(long arr[], int l, int m, int r) { // Find sizes of two subarrays to be merged int n1 = m — l + 1; int n2 = r — m;

/* Create temp arrays */
    long L[] = new long[n1];
    long R[] = new long[n2];

    /*Copy data to temp arrays*/
    for (int i=0; i<n1; ++i)
        L[i] = arr[l + i];
    for (int j=0; j<n2; ++j)
        R[j] = arr[m + 1+ j];


    /* Merge the temp arrays */

    // Initial indexes of first and second subarrays
    int i = 0, j = 0;

    // Initial index of merged subarry array
    int k = l;
    while (i < n1 && j < n2)
    {
        if (L[i] <= R[j])
        {
            arr[k] = L[i];
            i++;
        }
        else
        {
            arr[k] = R[j];
            j++;
        }
        k++;
    }

    /* Copy remaining elements of L[] if any */
    while (i < n1)
    {
        arr[k] = L[i];
        i++;
        k++;
    }

    /* Copy remaining elements of R[] if any */
    while (j < n2)
    {
        arr[k] = R[j];
        j++;
        k++;
    }
}

/////////////////////////////////////////////////////////////////////////////////////////

public static long knapsack(int[] weight,long value[],int maxWeight){


    int n=  value.length ;


//dp[i] stores the profit with KnapSack capacity "i" 

long []dp = new long[maxWeight+1];

//initially profit with 0 to W KnapSack capacity is 0 
Arrays.fill(dp, 0); 

// iterate through all items 
for(int i=0; i < n; i++)  

    //traverse dp array from right to left 
    for(int j = maxWeight; j >= weight[i]; j--) 
        dp[j] = Math.max(dp[j] , value[i] + dp[j - weight[i]]); 

/*above line finds out maximum of dp[j](excluding ith element value) 
and val[i] + dp[j-wt[i]] (including ith element value and the 
profit with "KnapSack capacity - ith element weight") */
return dp[maxWeight]; 
}

/////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////

// to return max sum of any subarray in given array public static long kadanesAlgorithm(long[] arr) { long[] dp = new long[arr.length] ;

dp[0] = arr[0] ;
  long max =  dp[0] ;


  for(int i = 1; i <  arr.length ; i++)
  {
        if(dp[i-1] > 0)
        {
              dp[i] = dp[i-1] + arr[i] ;
        }
        else{
              dp[i] = arr[i] ;
        }

        if(dp[i] >  max)max = dp[i] ;

  }

  return max  ;

} ///////////////////////////////////////////////////////////////////////////////////////////// public static long kadanesAlgorithm(int[] arr) { long[] dp = new long[arr.length] ;

dp[0] = arr[0] ;
  long max =  dp[0] ;


  for(int i = 1; i <  arr.length ; i++)
  {
        if(dp[i-1] > 0)
        {
              dp[i] = dp[i-1] + arr[i] ;
        }
        else{
              dp[i] = arr[i] ;
        }

        if(dp[i] >  max)max = dp[i] ;

  }

  return max  ;

}

///////////////////////////////////////////////////////////////////////////////////////

/////////////////////////////////////////////////////////////////////////////////////////

public static long binarySerachGreater(int[] arr , int start , int end , int val) {

// fing total no of elements strictly grater than val in sorted array arr 


  if(start >  end)return  0 ; //Base case


  int mid = (start + end)/2  ;

  if(arr[mid] <=val)
  {
      return binarySerachGreater(arr,mid+1, end ,val) ; 

  }
  else{

     return binarySerachGreater(arr,start , mid -1,val) + end-mid+1 ;    

  }

}

////////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////////////

//TO GENERATE ALL(DUPLICATE ALSO EXIST) PERMUTATIONS OF A STRING

// JUST CALL generatePermutation( str, start, end) start :inclusive ,end : exclusive

//Function for swapping the characters at position I with character at position j
public static String swapString(String a, int i, int j) {
char[] b =a.toCharArray();
char ch;
ch = b[i];
b[i] = b[j];
b[j] = ch;
return String.valueOf(b);
}

//Function for generating different permutations of the string
public static void generatePermutation(String str, int start, int end)
{
//Prints the permutations
if (start == end-1)
System.out.println(str);
else
{
for (int i = start; i < end; i++)
{
//Swapping the string by fixing a character
str = swapString(str,start,i);
//Recursively calling function generatePermutation() for rest of the characters
generatePermutation(str,start+1,end);
//Backtracking and swapping the characters again.
str = swapString(str,start,i);
}
}
}

//////////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////////////////

public static long factMod(long n, long mod) { if (n <= 1) return 1; long ans = 1; for (int i = 1; i <= n; i++) { ans = (ans * i) % mod; } return ans; }

///////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////////////

public static long power(int x ,int n) { //time comp : o(logn)

if(n==0)return 1 ;
    if(n==1)return x;

    long ans =1L  ;

  while(n>0)
  {
      if(n % 2 ==1)
      {
          ans = ans *x ;
      }

      n /= 2 ;

      x =  x*x ;

  }

  return ans ;
}

//////////////////////////////////////////////////////////////////////////////////////////////////// public static long powerMod(long x, long n, long mod) { //time comp : o(logn)

if(n==0)return 1L ;
    if(n==1)return x;


long ans = 1;
while (n > 0) {
  if (n % 2 == 1) ans = (ans * x) % mod;
  x = (x * x) % mod;
  n /= 2;
}
return ans;

}

//////////////////////////////////////////////////////////////////////////////////

/////////////////////////////////////////////////////////////////////////////////

/* lowerBound — finds largest element equal or less than value paased upperBound — finds smallest element equal or more than value passed

if not present return -1;

*/

public static long lowerBound(long[] arr,long k) { long ans=-1;

    int start=0;
    int end=arr.length-1;

    while(start<=end)
    {
       int mid=(start+end)/2;

       if(arr[mid]<=k)
       {
         ans=arr[mid];
         start=mid+1;
       }
       else
       {
         end=mid-1;
       }

    }

    return ans;

}

public static int lowerBound(int[] arr,int k)
{
    int ans=-1;

    int start=0;
    int end=arr.length-1;

    while(start<=end)
    {
       int mid=(start+end)/2;

       if(arr[mid]<=k)
       {
         ans=arr[mid];
         start=mid+1;
       }
       else
       {
         end=mid-1;
       }

    }

    return ans;

}


public static long upperBound(long[] arr,long k)
{
    long ans=-1;

    int start=0;
    int end=arr.length-1;

    while(start<=end)
    {
       int mid=(start+end)/2;

       if(arr[mid]>=k)
       {
         ans=arr[mid];
         end=mid-1;
       }
       else
       {
         start=mid+1;
       }

    }

    return ans;
}


public static int upperBound(int[] arr,int k)
{
    int ans=-1;

    int start=0;
    int end=arr.length-1;

    while(start<=end)
    {
       int mid=(start+end)/2;

       if(arr[mid]>=k)
       {
         ans=arr[mid];
         end=mid-1;
       }
       else
       {
         start=mid+1;
       }

    }

    return ans;
}

//////////////////////////////////////////////////////////////////////////////////////////

public static void printArray(int[] arr , int si ,int ei) { for(int i = si ; i <= ei ; i++) { out.print(arr[i] +" ") ; }

}

public static void printArrayln(int[] arr , int si ,int ei) { for(int i = si ; i <= ei ; i++) { out.print(arr[i] +" ") ; } out.println() ; }

public static void printLArray(long[] arr , int si , int ei) { for(int i = si ; i <= ei ; i++) { out.print(arr[i] +" ") ; }

}

public static void printLArrayln(long[] arr , int si , int ei) { for(int i = si ; i <= ei ; i++) { out.print(arr[i] +" ") ; } out.println() ;

}

///////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////////////////////

static ArrayList[] tree ; static long[] child; static int mod= 1000000007 ; static int[][] pre = new int[3001][3001]; static int[][] suf = new int[3001][3001] ;

//program to calculate noof nodes in subtree for every vertex including itself

// static void dfs(int sv) // { // child[sv] = 1L;

// for(Integer x : tree[sv]) // { // if(child[x] == 0) // {

// dfs(x) ;

// child[sv] += child[x] ; // } // } // }

////////////////////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////////////////////

public static void solve() { FastReader scn = new FastReader() ;

//int[] store = {2 ,3, 5 , 7 ,11 , 13 , 17 , 19 , 23 , 29 , 31 , 37 } ;

// product of first 11 prime nos is greater than 10 ^ 12;

//ArrayList arr[] = new ArrayList[n] ; ArrayList list = new ArrayList<>() ; ArrayList listl = new ArrayList<>() ; //ArrayList lista = new ArrayList<>() ; //ArrayList listb = new ArrayList<>() ; //ArrayList lists = new ArrayList<>() ;

HashMap<Integer,Integer> map = new HashMap<>() ; //HashMap<Long,Long> map = new HashMap<>() ; HashMap<Integer,Integer> map1 = new HashMap<>() ; HashMap<Integer,Integer> map2 = new HashMap<>() ; //HashMap<String,Integer> maps = new HashMap<>() ; //HashMap<Integer,Boolean> mapb = new HashMap<>() ; //HashMap<Point,Integer> point = new HashMap<>() ;

Set set = new HashSet<>() ; Set setx = new HashSet<>() ; Set sety = new HashSet<>() ;

StringBuilder sb =new StringBuilder("") ;

//Collections.sort(list);

//if(map.containsKey(arr[i]))map.put(arr[i] , map.get(arr[i]) +1 ) ; //else map.put(arr[i],1) ;

// if(map.containsKey(temp))map.put(temp , map.get(temp) +1 ) ; // else map.put(temp,1) ;

//int bit =Integer.bitCount(n); // gives total no of set bits in n;

// Arrays.sort(arr, new Comparator() { // @Override // public int compare(Pair a, Pair b) { // if (a.first != b.first) { // return a.first — b.first; // for increasing order of first // } // return a.second — b.second ; //if first is same then sort on second basis // } // });

int testcase = 1;

// testcase = scn.nextInt() ;

while(testcase-- > 0) {

//if(map.containsKey(arr[i]))map.put(arr[i],map.get(arr[i])+1) ;else map.put(arr[i],1) ; //if(map.containsKey(temp))map.put(temp,map.get(temp)+1) ;else map.put(temp,1) ;

// tree = new ArrayList[n] ;

// child = new long[n] ;

// for(int i = 0; i< n; i++) // { // tree[i] = new ArrayList(); // }

//int n = scn.nextInt() ; //int m = scn.nextInt() ; //int k = scn.nextInt() ;

// long n = scn.nextLong() ; //long a = scn.nextLong() ; //int[] arr = new int[n+1] ; //for(int i = 0 ; i < arr.length ; i++){ //Arrays.fill(arr,-1) ; //long b = scn.nextLong() ; //long[] arr = new long[n] ; for(int i = 0 ; i < n ;i++)arr[i] = scn.nextLong() ;

long a = scn.nextLong() ;long b = scn.nextLong() ;long x = scn.nextLong() ;long y = scn.nextLong() ;

//int a = scn.nextInt() ;int b = scn.nextInt() ;int x = scn.nextInt() ;int y = scn.nextInt() ;

if((a < x) || (b < y)) { out.println(0 +" " + 0) ; }

else{

long tempx = x; long tempy = y ;

while( a >= tempx &&  b >= tempy)
{
    tempx =  tempx +x ; tempy =  tempy + y ;
}

out.println((tempx-x)+" " + (tempy-y)) ;

// out.println((tempx)+" " + (tempy)) ;

}

//out.println() ;

//out.println(ans) ;

//out.println(ans) ;

//out.println() ;

//for(int i = 0; i < n; i++)out.print(arr[i]+ " ") ;

// for(int i = 0; i < arr.length ; i++) // { // for(int j = 0; j < arr[0].length ; j ++) // { // out.print(arr[i][j] +" "); // } // out.println() ; // }

sb.delete(0 , sb.length()) ; list.clear() ; map.clear() ; map1.clear() ; map2.clear() ; set.clear() ;

} // test case end loop

out.flush() ;
} // solve fn ends

public static void main (String[] args) throws java.lang.Exception {

solve() ;

}

}

class Pair { int first ;

int second ;

@Override public String toString() {

String ans = "" ;
ans  += this.first ;
ans += " ";
ans += this.second ;

return ans  ;
}

}

////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// PROBLEM LINK :-https://codeforces.net/contest/16/problem/C I KNOW MY LOGIC IS NOT CORRECT BUT THEN IT SHOULD GIVE WRONG ANSWER NOT RUNTIME ERROR. PLZ ANY JAVA GEEK HELP ....

History

 
 
 
 
Revisions
 
 
  Rev. Lang. By When Δ Comment
en3 English GuptaJi 2020-09-04 14:08:26 33092
en2 English GuptaJi 2020-09-04 12:36:10 1
en1 English GuptaJi 2020-09-04 12:34:57 32940 Initial revision (published)