Problem A
It can be proven that any operation which increases the value of $$$min(a_1, a_2, \dots, a_n)$$$ is unoptimal. Thus, we can take any index $$$m$$$ such that $$$a_m$$$ is the array minimum and use it to increase all other values.
Time complexity: $$$O(n)$$$ or $$$O(nk)$$$ per testcase.
Space complexity: $$$O(n)$$$
// chrono::system_clock::now().time_since_epoch().count()
#include<bits/stdc++.h>
#define pb push_back
#define eb emplace_back
#define mp make_pair
#define fi first
#define se second
#define all(x) (x).begin(), (x).end()
#define debug(x) cerr << #x << " = " << x << endl;
using namespace std;
typedef long long ll;
typedef pair<int, int> pii;
const int MAXN = (int)1e3 + 5;
int n, k;
int arr[MAXN];
void solve() {
scanf("%d %d", &n, &k);
for (int i = 1; i <= n; ++i) {
scanf("%d", &arr[i]);
}
int mn = min_element(arr + 1, arr + n + 1) - arr;
int ans = 0;
for (int i = 1; i <= n; ++i) {
if (i != mn) {
while (arr[i] + arr[mn] <= k) {
arr[i] += arr[mn];
++ans;
}
}
}
printf("%d\n", ans);
}
int main() {
int tt;
scanf("%d", &tt);
while (tt--) {
solve();
}
return 0;
}
Problem B
Let us partition the array into three sets $$$X$$$, $$$Y$$$, $$$Z$$$ such that $$$X$$$ contains all numbers less than $$$T/2$$$, $$$Y$$$ contains all numbers equal to $$$T/2$$$ and $$$Z$$$ contains all numbers greater than $$$T/2$$$. It is clear that $$$f(X) = f(Y) = 0$$$. Now, since each pair in $$$Y$$$ makes a sum of $$$T$$$, the best solution is to distribute all numbers in $$$Y$$$ equally among $$$X$$$ and $$$Z$$$.
Time complexity: $$$O(n)$$$
Space complexity: $$$O(n)$$$
#include <bits/stdc++.h>
#define len(v) ((int)((v).size()))
#define all(v) (v).begin(), (v).end()
#define rall(v) (v).rbegin(), (v).rend()
#define chmax(x, v) x = max((x), (v))
#define chmin(x, v) x = min((x), (v))
using namespace std;
using ll = long long;
void solve() {
int n, tar;
cin >> n >> tar;
int curMid = 0;
for (int i = 0; i < n; ++i) {
int x; cin >> x;
int r;
if (tar % 2 == 0 && x == tar/2)
r = (curMid++) % 2;
else if (2*x < tar)
r = 0;
else
r = 1;
cout << r << " \n"[i==n-1];
}
}
int main() {
ios::sync_with_stdio(false), cin.tie(0);
int nbTests;
cin >> nbTests;
for (int iTest = 0; iTest < nbTests; ++iTest) {
solve();
}
}
Problem C
Let's fix some arbitrary number $$$x$$$ and calculate the minimum value of $$$k$$$ such that $$$x$$$ occurs in all segments of length $$$k$$$. Let $$$p_1 < p_2 < \dots < p_m$$$ be the indices of entries of $$$x$$$ in the array. Then, for each $$$1 \le i < m$$$ it is clear that $$$k$$$ should be at least the value of $$$p_{i+1}-p_i$$$. Also, $$$k \ge p_1$$$ and $$$k \ge n - p_m + 1$$$. It is enough to just take the maximum of those values. Let's call this derived value of $$$k$$$ as $$$f(x)$$$.
Now, we can just go in increasing order of $$$x$$$ from $$$1$$$ to $$$n$$$ and try update the suffix $$$[f(x), n]$$$ with $$$x$$$. This can be done straightforwardly, just iterating over the range $$$[f(x), n]$$$. If we arrive at a cell for which the value of $$$x$$$ is already calculated, we immediately terminate our loop and continue our algorithm from $$$x+1$$$.
Time complexity: $$$O(n)$$$. Space complexity: $$$O(n)$$$.
// chrono::system_clock::now().time_since_epoch().count()
#include<bits/stdc++.h>
#define pb push_back
#define eb emplace_back
#define mp make_pair
#define fi first
#define se second
#define all(x) (x).begin(), (x).end()
#define debug(x) cerr << #x << " = " << x << endl;
using namespace std;
typedef long long ll;
typedef pair<int, int> pii;
const int MAXN = (int)3e5 + 5;
int f[MAXN], last[MAXN], arr[MAXN], ans[MAXN];
int n;
void solve() {
scanf("%d", &n);
for (int i = 1; i <= n; ++i) {
f[i] = last[i] = 0;
ans[i] = -1;
}
for (int i = 1; i <= n; ++i) {
scanf("%d", &arr[i]);
}
for (int i = 1; i <= n; ++i) {
int x = arr[i];
f[x] = max(f[x], i - last[x]);
last[x] = i;
}
for (int x = 1; x <= n; ++x) {
f[x] = max(f[x], n - last[x] + 1);
for (int i = f[x]; i <= n && ans[i] == -1; ++i) {
ans[i] = x;
}
}
for (int i = 1; i <= n; ++i) {
printf("%d%c", ans[i], " \n"[i == n]);
}
}
int main() {
int tt;
scanf("%d", &tt);
while (tt--) {
solve();
}
return 0;
}
Problem D
Let $$$S$$$ be the sum of the array. If $$$S$$$ is not divisible by $$$n$$$, then the answer is obviously $$$-1$$$. Otherwise, there always exists a solution which uses no more than $$$3n$$$ queries. We will solve this problem in two phases.
First phase: gather the sum in $$$a_1$$$. Let's iterate over $$$2 \le i \le n$$$ in increasing order. If $$$a_i$$$ is divisible by $$$i$$$, we can immediately transfer it using one operation. Otherwise, we have to make it divisible by transferring $$$i - (a_i \bmod i)$$$ from $$$a_1$$$ to $$$a_i$$$. Note that this operation does not break a condition on non-negativity because all $$$a_i$$$ are initially positive. This way, we successfully finish this phase using at most $$$2n$$$ operations.
Second phase: distribute the sum across all elements. Just iterate over all $$$2 \le i \le n$$$ and make a transfer of $$$S/n$$$ from $$$a_1$$$ to $$$a_i$$$. It takes at most $$$n$$$ operations.
Time complexity: $$$O(n)$$$
Space complexity: $$$O(n)$$$
// chrono::system_clock::now().time_since_epoch().count()
#include<bits/stdc++.h>
#define pb push_back
#define eb emplace_back
#define mp make_pair
#define fi first
#define se second
#define all(x) (x).begin(), (x).end()
#define debug(x) cerr << #x << " = " << x << endl;
using namespace std;
typedef long long ll;
typedef pair<int, int> pii;
const int MAXN = (int)1e4 + 5;
vector<array<int, 3>> ans;
int arr[MAXN];
int n;
void go(int x, int y, int z) {
arr[x] -= x * z;
arr[y] += x * z;
ans.pb({x, y, z});
}
void solve() {
scanf("%d", &n);
for (int i = 1; i <= n; ++i) {
scanf("%d", &arr[i]);
}
ans.clear();
int sum = accumulate(arr + 1, arr + n + 1, 0);
if (sum % n) {
printf("-1\n");
return;
}
for (int i = 2; i <= n; ++i) {
if (arr[i] % i) {
go(1, i, i - arr[i] % i);
}
go(i, 1, arr[i] / i);
}
for (int i = 2; i <= n; ++i) {
go(1, i, sum / n);
}
for (int i = 1; i <= n; ++i) {
assert(arr[i] == sum / n);
}
assert((int)ans.size() <= 3 * n);
printf("%d\n", (int)ans.size());
for (auto &[x, y, z] : ans) {
printf("%d %d %d\n", x, y, z);
}
}
int main() {
int tt;
scanf("%d", &tt);
while (tt--) {
solve();
}
return 0;
}
Problem E
#include <bits/stdc++.h>
#define mp make_pair
#define pb push_back
#define f first
#define s second
#define ll long long
#define forn(i, a, b) for(int i = (a); i <= (b); ++i)
#define forev(i, b, a) for(int i = (b); i >= (a); --i)
#define VAR(v, i) __typeof( i) v=(i)
#define forit(i, c) for(VAR(i, (c).begin()); i != (c).end(); ++i)
#define all(x) (x).begin(), (x).end()
#define sz(x) ((int)(x).size())
#define file(s) freopen(s".in","r",stdin); freopen(s".out","w",stdout);
using namespace std;
const int maxn = (int)4e6 + 100;
const int maxm = (int)1e6 + 100;
const int mod = (int)1e9 + 7;
const int P = (int) 1e6 + 7;
const double pi = acos(-1.0);
#define inf mod
typedef long double ld;
typedef pair<int, int> pii;
typedef pair<ll, ll> pll;
typedef vector<int> vi;
typedef vector<ll> Vll;
typedef vector<pair<int, int> > vpii;
typedef vector<pair<ll, ll> > vpll;
int n, t[2][maxn], id = 1;
ll dp[2][30];
vi g[maxn];
void add(int x, int pos){
int v = 0;
forev(i, 29, 0){
int bit = ((x >> i) & 1);
if(!t[bit][v]) t[bit][v] = id++;
v = t[bit][v];
g[v].pb(pos);
}
}
void go(int v, int b = 29){
int l = t[0][v], r = t[1][v];
if(l) go(l, b - 1);
if(r) go(r, b - 1);
if(!l || !r) return;
ll res = 0;
int ptr = 0;
for(auto x : g[l]){
while(ptr < sz(g[r]) && g[r][ptr] < x) ptr++;
res += ptr;
}
dp[0][b] += res;
dp[1][b] += sz(g[l]) * 1ll * sz(g[r]) - res;
}
void solve(){
scanf("%d", &n);
forn(i, 1, n){
int x;
scanf("%d", &x);
add(x, i);
}
go(0);
ll inv = 0;
int res = 0;
forn(i, 0, 29){
inv += min(dp[0][i], dp[1][i]);
if(dp[1][i] < dp[0][i])
res += (1 << i);
}
printf("%lld %d", inv, res);
}
int main () {
int t = 1;
//scanf("%d", &t);
while(t--) solve();
}
Problem F
...
// chrono::system_clock::now().time_since_epoch().count()
#include<bits/stdc++.h>
#define pb push_back
#define eb emplace_back
#define mp make_pair
#define fi first
#define se second
#define all(x) (x).begin(), (x).end()
#define debug(x) cerr << #x << " = " << x << endl;
using namespace std;
typedef long long ll;
typedef pair<int, int> pii;
const int MAXN = (int)5e5 + 5;
const int MAXM = (int)3e5 + 5;
const int MAXQ = (int)5e5 + 5;
pii e[MAXM], que[MAXQ], t[MAXN << 2];
vector<int> adj[MAXN];
int tin[MAXN], tout[MAXN], timer;
int par[MAXN], arr[MAXN];
bool del[MAXM];
int n, m, q;
int getPar(int x) {
if (x == par[x]) {
return x;
}
return par[x] = getPar(par[x]);
}
void uni(int a, int b) {
a = getPar(a);
b = getPar(b);
if (a == b) {
return;
}
++n;
par[n] = n;
par[a] = n;
par[b] = n;
adj[n].pb(a);
adj[n].pb(b);
}
void dfs(int v) {
tin[v] = ++timer;
for (int to : adj[v]) {
dfs(to);
}
tout[v] = timer;
}
pii segMax(int v, int tl, int tr, int l, int r) {
if (l > r || tl > r || tr < l) {
return mp(0, 0);
}
if (l <= tl && tr <= r) {
return t[v];
}
int mid = (tl + tr) >> 1;
int c1 = (v << 1), c2 = (c1 | 1);
return max(segMax(c1, tl, mid, l, r), segMax(c2, mid + 1, tr, l, r));
}
void updPos(int v, int tl, int tr, int p, pii x) {
if (tl == tr) {
t[v] = x;
return;
}
int mid = (tl + tr) >> 1;
int c1 = (v << 1), c2 = (c1 | 1);
if (p <= mid) {
updPos(c1, tl, mid, p, x);
}
else {
updPos(c2, mid + 1, tr, p, x);
}
t[v] = max(t[c1], t[c2]);
}
void solve() {
scanf("%d %d %d", &n, &m, &q);
for (int i = 1; i <= n; ++i) {
scanf("%d", &arr[i]);
}
for (int i = 1; i <= m; ++i) {
int u, v;
scanf("%d %d", &u, &v);
e[i] = mp(u, v);
}
for (int i = 1; i <= q; ++i) {
int a, b;
scanf("%d %d", &a, &b);
que[i] = mp(a, b);
if (a == 2) {
del[b] = 1;
}
}
for (int i = 1; i <= n; ++i) {
par[i] = i;
}
for (int i = 1; i <= m; ++i) {
if (!del[i]) {
uni(e[i].fi, e[i].se);
}
}
for (int i = q; i > 0; --i) {
int tp = que[i].fi;
if (tp == 2) {
int id = que[i].se;
uni(e[id].fi, e[id].se);
}
else {
que[i].se = getPar(que[i].se);
}
}
for (int i = 1; i <= n; ++i) {
if (getPar(i) == i) {
dfs(i);
}
}
for (int i = 1; i <= n; ++i) {
updPos(1, 1, n, tin[i], mp(arr[i], tin[i]));
}
for (int i = 1; i <= q; ++i) {
int tp = que[i].fi;
if (tp == 1) {
int v = que[i].se;
pii tmp = segMax(1, 1, n, tin[v], tout[v]);
if (tmp.fi == 0) {
printf("0\n");
}
else {
printf("%d\n", tmp.fi);
updPos(1, 1, n, tmp.se, mp(0, 0));
}
}
}
}
int main() {
int tt = 1;
while (tt--) {
solve();
}
return 0;
}
Problem G
...
#include <bits/stdc++.h>
#define int long long
#define len(v) ((int)((v).size()))
#define all(v) (v).begin(), (v).end()
#define rall(v) (v).rbegin(), (v).rend()
#define chmax(x, v) x = max((x), (v))
#define chmin(x, v) x = min((x), (v))
using namespace std;
using pii = pair<int, int>;
struct EndSet {
set<int> points;
pii seg = {1, 0};
int cbase = 0, cdir = 1;
void setFree(int mx) {
points.clear(), cbase = 0, cdir = 1;
seg = {1, mx};
}
void setPush(int x) {
setFree(0);
points.insert(x);
}
void rotate(int balance) {
cbase = balance - cbase;
cdir = -cdir;
seg = {balance - seg.second, balance - seg.first};
}
int tr(int x) {
return cbase + cdir*x;
}
int anti(int x) {
return cdir * (x - cbase);
}
bool in(int x) {
if (points.count(anti(x)))
return true;
return (seg.first <= x && x <= seg.second);
}
void push(int x) {
points.insert(anti(x));
}
void popBelow(int x) {
seg.second = min(seg.second, x);
auto nextIt = [&] {
return (cdir == 1 ? prev(points.end()) : points.begin());
};
while (!points.empty() && tr(*nextIt()) > x)
points.erase(nextIt());
}
bool empty() {
return points.empty() && seg.first > seg.second;
}
};
void solve() {
int n; cin >> n;
EndSet util;
int curAns = 0;
for (int i = 0; i < n; ++i) {
int x; cin >> x;
util.popBelow(x-1);
if (x % 2 == 0 && util.in(x/2)) {
curAns += 2;
util.setPush(x/2);
} else if (util.empty()) {
if (x % 2 == 0)
curAns += 1, util.setPush(x/2);
else
util.setFree(x-1);
} else {
curAns += 1;
if (x % 2 == 0)
util.push(x/2);
}
util.rotate(x);
}
cout << 2*n - curAns << "\n";
}
signed main() {
ios::sync_with_stdio(false), cin.tie(0);
int nbTests;
cin >> nbTests;
for (int iTest = 0; iTest < nbTests; ++iTest) {
solve();
}
}
Problem H
...
// chrono::system_clock::now().time_since_epoch().count()
#include<bits/stdc++.h>
#define pb push_back
#define eb emplace_back
#define mp make_pair
#define fi first
#define se second
#define all(x) (x).begin(), (x).end()
#define debug(x) cerr << #x << " = " << x << endl;
using namespace std;
typedef long long ll;
typedef pair<int, int> pii;
typedef vector<int> vi;
typedef vector<vi> vvi;
const int dx[] = {0, 1, 0, -1};
const int dy[] = {1, 0, -1, 0};
const char dc[] = {'R', 'D', 'L', 'U'};
const int INF = (int)1e6;
const int MAXN = (int)3e5 + 5;
namespace {
struct Edge {
int v, to, f, c;
Edge() {
v = to = f = c = 0;
}
Edge(int v, int to, int c) : v(v), to(to), c(c) {
f = 0;
}
};
vector<Edge> e;
vector<int> adj[MAXN];
int ptr[MAXN], d[MAXN], q[MAXN];
int S, T, newS, newT, V;
int cap[2][MAXN];
void prep() {
e.clear();
for (int i = 0; i < V; ++i) {
adj[i].clear();
ptr[i] = d[i] = q[i] = 0;
cap[0][i] = cap[1][i] = 0;
}
}
void addEdge(int u, int v, int c) {
//printf("E %d %d %d\n", u, v, c);
adj[u].pb((int)e.size());
e.pb(Edge(u, v, c));
adj[v].pb((int)e.size());
e.pb(Edge(v, u, 0));
}
void addEdgeLim(int u, int v) {
//printf("F %d %d\n", u, v);
++cap[0][v];
++cap[1][u];
}
bool bfs() {
fill(d, d + V, -1);
d[newS] = 0;
int l = 0, r = 0;
q[r++] = newS;
while (l < r) {
int v = q[l++];
for (int id : adj[v]) {
if (e[id].f < e[id].c) {
int to = e[id].to;
if (d[to] == -1) {
d[to] = d[v] + 1;
q[r++] = to;
}
}
}
}
return d[newT] != -1;
}
int dfs(int v, int flow = INF) {
if (!flow || v == newT) {
return flow;
}
int sum = 0;
for (; ptr[v] < (int)adj[v].size(); ++ptr[v]) {
int id = adj[v][ptr[v]];
int to = e[id].to;
int can = e[id].c - e[id].f;
if (d[to] != d[v] + 1 || can == 0) {
continue;
}
int pushed = dfs(to, min(flow, can));
if (pushed > 0) {
e[id].f += pushed;
e[id ^ 1].f -= pushed;
sum += pushed;
flow -= pushed;
if (flow == 0) {
return sum;
}
}
}
return sum;
}
int maxFlow() {
int ret = 0;
while (bfs()) {
fill(ptr, ptr + V, 0);
while (int pushed = dfs(newS)) {
ret += pushed;
}
}
return ret;
}
}
vvi arr, follow;
int n, m;
bool inside(int x, int y) {
return 0 <= x && x < n && 0 <= y && y < m;
}
int id(int x, int y) {
return x * m + y;
}
void solve() {
scanf("%d %d", &n, &m);
arr = follow = vvi(n, vi(m, -1));
S = n * m;
T = S + 1;
newS = T + 1;
newT = newS + 1;
V = newT + 1;
prep();
for (int i = 0; i < n; ++i) {
for (int j = 0; j < m; ++j) {
scanf("%d", &arr[i][j]);
}
}
for (int i = 0; i < n; ++i) {
for (int j = 0; j < m; ++j) {
for (int dir = 0; dir < 4; ++dir) {
int ni = i + dx[dir], nj = j + dy[dir];
if (inside(ni, nj)) {
if (arr[ni][nj] < arr[i][j]) {
follow[i][j] = dir;
}
else if ((i + j) % 2 == 0 && arr[ni][nj] == arr[i][j]) {
addEdge(id(i, j), id(ni, nj), 1);
}
}
}
if (follow[i][j] == -1) {
// important vertex
if ((i + j) % 2) {
addEdgeLim(id(i, j), T);
}
else {
addEdgeLim(S, id(i, j));
}
}
else {
if ((i + j) % 2) {
addEdge(id(i, j), T, 1);
}
else {
addEdge(S, id(i, j), 1);
}
}
}
}
for (int i = 0; i <= T; ++i) {
if (cap[0][i] > 0) {
addEdge(newS, i, cap[0][i]);
}
if (cap[1][i] > 0) {
addEdge(i, newT, cap[1][i]);
}
}
addEdge(T, S, INF);
maxFlow();
for (int id : adj[newS]) {
if (e[id].f != e[id].c) {
printf("NO\n");
return;
}
}
vvi ansv, ansc;
ansv = ansc = vvi(n, vi(m));
for (int i = 0; i < n; ++i) {
for (int j = 0; j < m; ++j) {
int dir = follow[i][j];
if (dir != -1) {
int ni = i + dx[dir], nj = j + dy[dir];
ansv[i][j] = arr[i][j] - arr[ni][nj];
ansc[i][j] = dir;
}
}
}
for (Edge it : e) {
int v = it.v, to = it.to;
if (max(v, to) < n * m && it.f == it.c && it.c == 1) {
int ax = v / m, ay = v % m;
int bx = to / m, by = to % m;
ansv[ax][ay] = arr[ax][ay] - 1;
ansv[bx][by] = 1;
for (int dir = 0; dir < 4; ++dir) {
if (mp(ax + dx[dir], ay + dy[dir]) == mp(bx, by)) {
ansc[ax][ay] = dir;
ansc[bx][by] = (dir + 2) % 4;
}
}
}
}
printf("YES\n");
for (int i = 0; i < n; ++i) {
for (int j = 0; j < m; ++j) {
printf("%d%c", ansv[i][j], " \n"[j == m - 1]);
}
}
for (int i = 0; i < n; ++i) {
for (int j = 0; j < m; ++j) {
printf("%c%c", dc[ansc[i][j]], " \n"[j == m - 1]);
}
}
}
int main() {
int tt;
scanf("%d", &tt);
while (tt--) {
solve();
}
return 0;
}