Hi, I am on my adventure to solve CSES problem set. I found this nice editorial for Range Query section here
But i guess some new problems were added or were skipped there. I am struggling in one such problem. here Any hint/approach will be highly appreciated!
EDIT: Yay AC ! I tried to code it as simple as possible.
AC solution
#include<iostream>
#include<map>
#include<vector>
#include<climits>
#include<queue>
#include<cmath>
#include<stack>
#include<string>
#include<algorithm>
#define pb push_back
#define N (lli)(1e6)
#define lli long long int
#define mod (lli)(1e9+7)
#define INF (11)
#define fast_io ios_base::sync_with_stdio(false);cin.tie(NULL)
#define pb push_back
using namespace std;
void buildTree1(vector<lli>&arr,vector<lli>&tree,lli ns,lli ne,lli index)
{
if(ns==ne)
{
tree[index] = arr[ns]+ns;
return;
}
lli mid = (ns+ne)/2;
buildTree1(arr,tree,ns,mid,2*index);
buildTree1(arr,tree,mid+1,ne,2*index+1);
tree[index] = min(tree[2*index],tree[2*index+1]);
}
void buildTree2(vector<lli>&arr,vector<lli>&tree,lli ns,lli ne,lli index)
{
if(ns==ne)
{
tree[index] = arr[ns] - ns;
return;
}
lli mid = (ns+ne)/2;
buildTree2(arr,tree,ns,mid,2*index);
buildTree2(arr,tree,mid+1,ne,2*index+1);
tree[index] = min(tree[2*index],tree[2*index+1]);
}
void update1(vector<lli>&arr,vector<lli>&tree,lli ns,lli ne,lli toUpd,lli updVal,lli index)
{
// no overlap
if(ne<toUpd or ns>toUpd) return;
// complete overlap
if(ns==ne)
{
tree[index] = updVal + ns;
return;
}
// partial overlap
lli mid = (ns+ne)/2;
update1(arr, tree, ns, mid, toUpd, updVal, 2*index);
update1(arr, tree, mid+1, ne, toUpd, updVal, 2*index+1);
tree[index] = min(tree[2*index],tree[2*index+1]);
}
void update2(vector<lli>&arr,vector<lli>&tree,lli ns,lli ne,lli toUpd,lli updVal,lli index)
{
// no overlap
if(ne<toUpd or ns>toUpd) return;
// complete overlap
if(ns==ne)
{
tree[index] = updVal - ns;
return;
}
// partial overlap
lli mid = (ns+ne)/2;
update2(arr, tree, ns, mid, toUpd, updVal, 2*index);
update2(arr, tree, mid+1, ne, toUpd, updVal, 2*index+1);
tree[index] = min(tree[2*index],tree[2*index+1]);
}
lli query(vector<lli>&arr,vector<lli>&tree,lli ns,lli ne,lli l ,lli r,lli index)
{
// no overlap
if(r<ns or l>ne) return LLONG_MAX;
// complete overlap
if(l<=ns and ne<=r) return tree[index];
// partial overlap
lli mid = (ns+ne)/2;
lli left = query(arr, tree, ns, mid, l, r, 2*index);
lli right = query(arr,tree,mid+1,ne,l,r,2*index+1);
return min(left,right);
}
int main()
{
lli n,q;
cin>>n>>q;
vector<lli>arr(n);
for(lli i=0;i<n;i++) cin>>arr[i];
vector<lli>tree1(4*n+1);
vector<lli>tree2(4*n+1);
buildTree1(arr, tree1, 0, n-1, 1);
buildTree2(arr, tree2, 0, n-1, 1);
lli t,a,b;
while(q--)
{
cin>>t;
if(t==2)
{
cin>>a;
lli left = query(arr, tree2, 0, n-1, 1, a-1, 1);
lli right = query(arr,tree1,0,n-1,a-1,n-1,1);
cout<<min(left+(a-1),right-(a-1))<<endl;
}
else
{
cin>>a>>b;
update1(arr, tree1, 0, n-1, a-1, b,1);
update2(arr,tree2,0,n-1,a-1,b,1);
}
}
}