The Fibonacci numbers occur as the ratio of successive convergents of the continued fraction for $$$\varphi$$$, and the matrix formed from successive convergents of any continued fraction has a determinant of $$$+1$$$ or $$$-1$$$.
The matrix representation gives the following closed-form expression for the Fibonacci numbers i.e.
The matrix is multiplied $$$n$$$ time because then only we can get the $$$(n+1)^{th}$$$ Fibonacci number as the element at the row and the column $$$(0,0)$$$ in the resultant matrix.
If we apply the above method without using recursive multiplication of matrix, then the Time Complexity: $$$O(n)$$$ and Space Complexity: $$$O(1)$$$.
But we want Time Complexity: $$$O(log\ n)$$$, so we have to optimize the above method, which can be done by recursive multiplication of matrix to get the $$$n^{th}$$$ power.
Implementation of the above rule can be found below.
#include <stdio.h>
void multiply(int F[2][2], int M[2][2]);
void power(int F[2][2], int n);
/*
The function that returns nth Fibonacci number.
*/
int fib(int n) {
int F[2][2] = {{1, 1}, {1, 0}};
if (n == 0)
return 0;
power(F, n - 1);
return F[0][0];
}
/*
Optimized using recursive multiplication.
*/
void power(int F[2][2], int n) {
if ( n == 0 || n == 1)
return;
int M[2][2] = {{1, 1}, {1, 0}};
power(F, n / 2);
multiply(F, F);
if (n % 2 != 0)
multiply(F, M);
}
void multiply(int F[2][2], int M[2][2]) {
int x = F[0][0] * M[0][0] + F[0][1] * M[1][0];
int y = F[0][0] * M[0][1] + F[0][1] * M[1][1];
int z = F[1][0] * M[0][0] + F[1][1] * M[1][0];
int w = F[1][0] * M[0][1] + F[1][1] * M[1][1];
F[0][0] = x;
F[0][1] = y;
F[1][0] = z;
F[1][1] = w;
}
int main() {
printf("%d\n", fib(15));
/*
15th Fibonacci number is 610.
*/
return 0;
}