In a rooted tree $$$T$$$, let $$$dep_u$$$ be the distance from $$$u$$$ to the root, $$$dis_u$$$ be the distance from $$$u$$$ to the deepest leaf in $$$u$$$'s subtree.
# | User | Rating |
---|---|---|
1 | jiangly | 4039 |
2 | tourist | 3841 |
3 | jqdai0815 | 3682 |
4 | ksun48 | 3590 |
5 | ecnerwala | 3542 |
6 | Benq | 3535 |
7 | orzdevinwang | 3526 |
8 | gamegame | 3477 |
9 | heuristica | 3357 |
10 | Radewoosh | 3355 |
# | User | Contrib. |
---|---|---|
1 | cry | 167 |
2 | -is-this-fft- | 165 |
3 | atcoder_official | 160 |
3 | Um_nik | 160 |
5 | djm03178 | 158 |
6 | Dominater069 | 156 |
7 | adamant | 153 |
8 | luogu_official | 151 |
8 | awoo | 151 |
10 | TheScrasse | 147 |
How to analyze this expected value of a random tree?
In a rooted tree $$$T$$$, let $$$dep_u$$$ be the distance from $$$u$$$ to the root, $$$dis_u$$$ be the distance from $$$u$$$ to the deepest leaf in $$$u$$$'s subtree.
Rev. | Lang. | By | When | Δ | Comment | |
---|---|---|---|---|---|---|
en4 | Y25t | 2021-09-30 12:18:42 | 0 | (published) | ||
en3 | Y25t | 2021-09-30 12:13:56 | 1 | Tiny change: 'ooted tree.\n\nHow t' -> 'ooted trees.\n\nHow t' (saved to drafts) | ||
en2 | Y25t | 2021-09-30 10:51:01 | 216 | Tiny change: 's subtree.' -> 's subtree.\nLet $f(T)=\sum_{u\in T} dep_u\times dis_u$, ' (published) | ||
en1 | Y25t | 2021-09-30 10:26:42 | 194 | Initial revision (saved to drafts) |
Name |
---|