I recently read somewhere that some DP solutions like knapsack can be optimised and the overall complexity can be reduced by a factor of 32 using std::bitset in C++.
Can someone explain this optimisation and the kinds of DP on which this works ?
# | User | Rating |
---|---|---|
1 | tourist | 3856 |
2 | jiangly | 3747 |
3 | orzdevinwang | 3706 |
4 | jqdai0815 | 3682 |
5 | ksun48 | 3591 |
6 | gamegame | 3477 |
7 | Benq | 3468 |
8 | Radewoosh | 3462 |
9 | ecnerwala | 3451 |
10 | heuristica | 3431 |
# | User | Contrib. |
---|---|---|
1 | cry | 167 |
2 | -is-this-fft- | 162 |
3 | Dominater069 | 160 |
4 | Um_nik | 158 |
5 | atcoder_official | 157 |
6 | Qingyu | 155 |
7 | djm03178 | 151 |
7 | adamant | 151 |
9 | luogu_official | 150 |
10 | awoo | 147 |
I recently read somewhere that some DP solutions like knapsack can be optimised and the overall complexity can be reduced by a factor of 32 using std::bitset in C++.
Can someone explain this optimisation and the kinds of DP on which this works ?
Problem Link.
I've seen the public solutions but I am unable to understand them.
This is a game theory problem with Grundy Numbers but I am unable to break this game into smaller independent games in order to apply the Grundy theorem.
Can somebody please provide the solution with explanation ?
Name |
---|