# | User | Rating |
---|---|---|
1 | tourist | 3985 |
2 | jiangly | 3814 |
3 | jqdai0815 | 3682 |
4 | Benq | 3529 |
5 | orzdevinwang | 3526 |
6 | ksun48 | 3517 |
7 | Radewoosh | 3410 |
8 | hos.lyric | 3399 |
9 | ecnerwala | 3392 |
9 | Um_nik | 3392 |
# | User | Contrib. |
---|---|---|
1 | cry | 169 |
2 | maomao90 | 162 |
2 | Um_nik | 162 |
4 | atcoder_official | 161 |
5 | djm03178 | 158 |
6 | -is-this-fft- | 157 |
7 | adamant | 155 |
8 | awoo | 154 |
8 | Dominater069 | 154 |
10 | luogu_official | 151 |
There are $$$n$$$ points on the line, the position of $$$i$$$ th point is $$$p[i]$$$. there are Q querys. you will got a segment which length is $$$D[i]$$$, ask at least how many segments are needed to cover all points.
$$$ 1 \le n \le 10^5 $$$, $$$ 1 \le p[i] \le 10^9 $$$, $$$ 1 \le q \le 10^5 $$$
n points on 2D-plane. $$$n \ge 3$$$.
Exist three points a,b,c that $$$1 \le \frac{dis(a,b)}{dis(a, c)} \le \frac{n+1}{n-1}$$$.
How to prove that?
Name |
---|