how can I prove that if gcd(a,m) == 1
then there exists module multiplicative inverse, and also there exists only 1 inverse
# | User | Rating |
---|---|---|
1 | tourist | 4009 |
2 | jiangly | 3823 |
3 | Benq | 3738 |
4 | Radewoosh | 3633 |
5 | jqdai0815 | 3620 |
6 | orzdevinwang | 3529 |
7 | ecnerwala | 3446 |
8 | Um_nik | 3396 |
9 | ksun48 | 3390 |
10 | gamegame | 3386 |
# | User | Contrib. |
---|---|---|
1 | cry | 166 |
2 | maomao90 | 163 |
2 | Um_nik | 163 |
4 | atcoder_official | 161 |
5 | adamant | 160 |
6 | -is-this-fft- | 158 |
7 | awoo | 157 |
8 | TheScrasse | 154 |
9 | nor | 153 |
9 | Dominater069 | 153 |
how can I prove that if gcd(a,m) == 1
then there exists module multiplicative inverse, and also there exists only 1 inverse
Name |
---|
Proof of existence:
The equation $$$ax+mk=1$$$ always has solution if $$$\gcd(a,m)=1$$$ (Bézout's lemma), so $$$x\bmod m$$$ is a modular multiplicative inverse of $$$a$$$.
Proof of uniqueness:
Assume that $$$p,q\,(0\le p < q < m, q - p = k)$$$ are two modular multiplicative inverses of $$$a$$$. This means $$$ap\equiv aq\equiv 1\pmod{m}$$$. If $$$\gcd(a,m)=1$$$, then $$$p\equiv q\pmod{m}$$$. This implies $$$p=q$$$, which leads to a contradiction.
Consider $$$0 \cdot a, 1 \cdot a, 2 \cdot a, ..., (m - 1) \cdot a$$$ mod $$$m$$$. They are different, because if $$$a \cdot i = a \cdot j$$$, then $$$a \cdot (i - j) = 0$$$ mod $$$m$$$, which is impossible since $$$gcd(a, m) = 1$$$ and $$$|i - j| < m$$$. Then, there exists and only one $$$b$$$: such $$$a \cdot b = 1$$$ mod $$$m$$$.