the question is very simple we just need to calculate total number of numbers which have exactly 4 divisors for ex 6, 8, 10 these are all of the forms p^3 or p*q but here n<=10^11
# | User | Rating |
---|---|---|
1 | tourist | 3856 |
2 | jiangly | 3747 |
3 | orzdevinwang | 3706 |
4 | jqdai0815 | 3682 |
5 | ksun48 | 3591 |
6 | gamegame | 3477 |
7 | Benq | 3468 |
8 | Radewoosh | 3462 |
9 | ecnerwala | 3451 |
10 | heuristica | 3431 |
# | User | Contrib. |
---|---|---|
1 | cry | 167 |
2 | -is-this-fft- | 162 |
3 | Dominater069 | 160 |
4 | Um_nik | 158 |
5 | atcoder_official | 157 |
6 | Qingyu | 156 |
7 | djm03178 | 152 |
7 | adamant | 152 |
9 | luogu_official | 150 |
10 | awoo | 147 |
the question is very simple we just need to calculate total number of numbers which have exactly 4 divisors for ex 6, 8, 10 these are all of the forms p^3 or p*q but here n<=10^11
Name |
---|
Auto comment: topic has been updated by shrohit_007 (previous revision, new revision, compare).
Here $$$\pi(n)$$$ denotes prime counting function, i.e number of primes not greater than $$$n$$$.
Numbers form $$$p^3$$$ can be easily counted, it's just $$$\pi \left(\lfloor \sqrt[3]{n} \rfloor\right)$$$.
To calculate numbers form $$$pq$$$ recall, that
.
Primes and $$$\pi$$$ up to $$$\sqrt{n}$$$ can be calculated straightforward using Eratosphenes sieve.
Also you can calculate values of $$$\pi\left( \lfloor \frac{n}{k} \rfloor \right)$$$ for all $$$k \geqslant 1$$$ using $$$O(n^{2/3})$$$ time as described here https://codeforces.net/blog/entry/91632
IMHO this question is not very simple as it requires some knowledge.