Блог пользователя sharmaanuj334

Автор sharmaanuj334, история, 6 месяцев назад, По-английски

I was practicing DP through CSES when I got to the Two Sets II problem, wherein I got the confusion on the usage of mod to get the correct answer.

I had read earlier that if we wish to take mod of a summation, we have to take mod of individual elements of the series and then take the mod of summation.

$$$ \text{ans} = ( \sum_{i=1}^{n} (a[i] \% \text{mod})) \% \text{mod} $$$

But here are my two submitted codes:

  1. Accepted: not taking the overall mod on summation.
  2. Wrong Answer: taking the overall mod on summation.
Wrong Answer Code
Accepted Code

Due to this, I got confused about how we should be taking the mod and, in general, how you tackle such situations. (Right now, I'm looking for a discussion like the one from which I got to know of the binary search method of while (r-l > 1), which I now use, so I can only stress more on the concept of the problem.)

  • Проголосовать: нравится
  • +6
  • Проголосовать: не нравится

»
6 месяцев назад, # |
  Проголосовать: нравится 0 Проголосовать: не нравится

Whenever the sum can be bigger than the mod you must take a mod, which is almost always. For example if you add two numbers the max of each of them is MOD-1 so the sum can be 2*MOD-2. In CP, you don't need to decide on where to add mod though just put it after every operation. Some people use auxillary functions or even mod int templates.

PS: If the thing you are taking mod of can be negative you must make it positive because in C++ mod works in a way different than math (see Auxillary for example).

Auxillary
  • »
    »
    6 месяцев назад, # ^ |
      Проголосовать: нравится 0 Проголосовать: не нравится

    "if you add two numbers the max of each of them is MOD-1 so the sum can be 2*MOD-2"

    "Whenever the sum can be bigger than the mod you must take a mod, which is almost always."

    Yes, but then that gave me the wrong answer while taking up the mod on the sum and rather got accepted when I removed the mod on the sum. My major confusion is why taking mod on sum caused us harm. It is not getting a negative value anywhere in between so we won't have conflict in there.

»
6 месяцев назад, # |
  Проголосовать: нравится +3 Проголосовать: не нравится

CSES submissions are private.

  • »
    »
    6 месяцев назад, # ^ |
      Проголосовать: нравится 0 Проголосовать: не нравится

    Oh thanks a lot for that, I'm sorry I didn't knew about that and have now put them in spoilers.

»
6 месяцев назад, # |
  Проголосовать: нравится +6 Проголосовать: не нравится

another thing — you can't just divide a number under mod to get the correct answer. you should be multiplying by the modular inverse.

  • »
    »
    6 месяцев назад, # ^ |
      Проголосовать: нравится 0 Проголосовать: не нравится

    so can it be hacked? My code, which got accepted.

    and did you mean that it has to be (num * inv) % mod? I didn't understood that part.

    • »
      »
      »
      6 месяцев назад, # ^ |
        Проголосовать: нравится 0 Проголосовать: не нравится

      I couldn't prove why it works but when I tried n from 1 to 500 I couldn't find a hack, so you are safe.

»
6 месяцев назад, # |
  Проголосовать: нравится 0 Проголосовать: не нравится

You can try writing the first one as

dp[i][j] = ((take % mod) + (notTake % mod) + mod) % mod;
»
6 месяцев назад, # |
  Проголосовать: нравится 0 Проголосовать: не нравится

Modulo