Блог пользователя PUSSY_LICKING_LOLI_69

Автор PUSSY_LICKING_LOLI_69, история, 3 месяца назад, По-английски

Given a fixed k (k<=1e6), make an array F of size n (n<=1e6) , with F[i] be the number of ways to pick AT MOST k elements from i elements.

Is there a way to create this array efficiently?

  • Проголосовать: нравится
  • +2
  • Проголосовать: не нравится

»
3 месяца назад, # |
Rev. 2   Проголосовать: нравится +18 Проголосовать: не нравится

$$$F_i$$$ is the number of ways to pick at most $$$k$$$ elements from $$$i$$$ elements total.

If you don't pick the first element, you have $$$F_{i-1}$$$ ways to continue.

If you pick the first element, you need to choose at most $$$k-1$$$ from the remaining $$$i-1$$$. This is $$$F_{i-1}$$$ minus the number of ways to pick exactly $$$k$$$ from the remaining $$$i-1$$$ elements, so $$$F_{i-1} - \binom{i-1}{k}$$$.

In total $$$F_{i} = 2F_{i-1} - \binom{i-1}{k}$$$, you can compute the binomials quickly by precomputing factorials.

  • »
    »
    3 месяца назад, # ^ |
    Rev. 3   Проголосовать: нравится +8 Проголосовать: не нравится

    can you explain the second choice (where you pick the first element) more ?

    Edit: Don't mind, I got it.