Изменения рейтингов за последние раунды временно удалены. Скоро они будут возвращены. ×

Блог пользователя zrnstnsr

Автор zrnstnsr, история, 5 недель назад, По-английски

Introduction

A classical problem reads:

Count the paths from $$$(0,0)$$$ to $$$(m,n)(n>m>0)$$$ that doesn't go through $$$y=x$$$ (the path can touch the line). One can only move up or right by $$$1$$$ in one move.

The problem can also be described as:

Count binary strings that consist of $$$m$$$ zeros and $$$n$$$ ones $$$(n\ge m)$$$, such that in every prefix of the string, the number of zeros doesn't exceed the number of ones.

Consider how to count paths from $$$(0,0)$$$ to $$$(m,n)$$$ without the intersection restriction. To get to $$$(m,n)$$$, we must move up $$$n$$$ times and move right $$$m$$$ times. In other words, we need to permute $$$n$$$ right and $$$m$$$ up, whose quantity is

$$$\displaystyle{\frac{(m+n)!}{m!n!}=\binom{m+n}{m}}$$$

To find the answer, we can try to count the paths that go through $$$y=x$$$, and this is when the reflection principle is utilized. The principle says:

Given point $$$A,B$$$ at the same side of line $$$l$$$, the number of paths from $$$A$$$ to $$$B$$$ that intersect with $$$l$$$ is equal to that of paths from $$$A^\prime$$$ to $$$B$$$, where $$$A^\prime$$$ is the reflection point through $$$l$$$.

To show why it is correct, we should first note that a path from $$$A^\prime$$$ to $$$B$$$ must intersect with $$$y=x$$$. Say at point $$$P$$$ the path first intersect with $$$y=x$$$, we can reflect the path from $$$A^\prime$$$ to $$$P$$$ through $$$l$$$ and get a path from $$$A$$$ to $$$B$$$, and vice versa. This indicates that the intersecting paths from $$$A$$$ to $$$B$$$ and the paths from $$$A^\prime$$$ and $$$B$$$ are one-to-one corresponded, and the quantity of the two are the same.

Back to our problem. Going through $$$y=x$$$ is the same as intersecting with $$$y=x-1$$$ in this case, so $$$(0,0)$$$ can reflected to $$$(1,-1)$$$, and the number of intersecting path is $$$\binom{m+n}{m-1}$$$. Therefore, the answer to the problem is

$$$\boxed{\displaystyle{\binom{m+n}{m}-\binom{m+n}{m-1}=\frac{n-m+1}{n+1}\binom{m+n}{m}}}$$$

In particular, when $$$n=m$$$, the formula becomes

$$$\boxed{\displaystyle{\frac{1}{n+1}\binom{2n}{n}}}$$$

which is the Catalan number.

Note

Examples

26D - Билеты

Tutorial

105390D - String From Another World

Tutorial

2025E - Карточная игра

Tutorial
  • Проголосовать: нравится
  • +137
  • Проголосовать: не нравится

»
5 недель назад, # |
  Проголосовать: нравится 0 Проголосовать: не нравится

Auto comment: topic has been updated by zrnstnsr (previous revision, new revision, compare).

»
5 недель назад, # |
  Проголосовать: нравится 0 Проголосовать: не нравится

Auto comment: topic has been updated by zrnstnsr (previous revision, new revision, compare).

»
5 недель назад, # |
  Проголосовать: нравится 0 Проголосовать: не нравится

Going through y=x is the same as intersecting with y=x−1 in this case, so (0,0) can reflected to (1,−1) ,

How so?

»
5 недель назад, # |
  Проголосовать: нравится 0 Проголосовать: не нравится

ZZ!!

»
5 недель назад, # |
  Проголосовать: нравится 0 Проголосовать: не нравится

its amazing!!

»
5 недель назад, # |
  Проголосовать: нравится 0 Проголосовать: не нравится

that's an very interesting solution for me. IQ+1

»
2 недели назад, # |
Rev. 5   Проголосовать: нравится 0 Проголосовать: не нравится

n in second tutorial suppose to be m isn't it? at the formula $$$ \binom{n}{i - k} - \binom{n}{i - k - 1} $$$