we define function f(i,j) on array A as below:
f(i,j) = (i-j)^2 + (A[i+1] + A[i+2] + A[i+3] + ... + A[j])^2
find the minimum value of function f.
2 <= A.size <= 10^5
-10^4 <= A[i] <= 10^4
# | User | Rating |
---|---|---|
1 | tourist | 3856 |
2 | jiangly | 3747 |
3 | orzdevinwang | 3706 |
4 | jqdai0815 | 3682 |
5 | ksun48 | 3591 |
6 | gamegame | 3477 |
7 | Benq | 3468 |
8 | Radewoosh | 3462 |
9 | ecnerwala | 3451 |
10 | heuristica | 3431 |
# | User | Contrib. |
---|---|---|
1 | cry | 167 |
2 | -is-this-fft- | 162 |
3 | Dominater069 | 160 |
4 | Um_nik | 158 |
5 | atcoder_official | 157 |
6 | Qingyu | 156 |
7 | adamant | 151 |
7 | djm03178 | 151 |
7 | luogu_official | 151 |
10 | awoo | 146 |
we define function f(i,j) on array A as below:
f(i,j) = (i-j)^2 + (A[i+1] + A[i+2] + A[i+3] + ... + A[j])^2
find the minimum value of function f.
2 <= A.size <= 10^5
-10^4 <= A[i] <= 10^4
Name |
---|
Firstly , we can make a cumulative sum array Prefix[i] . The function f(i,j) can be written as = ( i — j ) ^ 2 + ( Prefix[i] — Prefix[j] ) ^ 2 . Now this is analogous with closest pair point problem where each coordinate is ( i , Prefix[i] ) . The Complexity would be O(N log N ) .