# | User | Rating |
---|---|---|
1 | jiangly | 3898 |
2 | tourist | 3840 |
3 | orzdevinwang | 3706 |
4 | ksun48 | 3691 |
5 | jqdai0815 | 3682 |
6 | ecnerwala | 3525 |
7 | gamegame | 3477 |
8 | Benq | 3468 |
9 | Ormlis | 3381 |
10 | maroonrk | 3379 |
# | User | Contrib. |
---|---|---|
1 | cry | 168 |
2 | -is-this-fft- | 165 |
3 | Dominater069 | 161 |
4 | atcoder_official | 160 |
4 | Um_nik | 160 |
6 | djm03178 | 157 |
7 | adamant | 153 |
8 | luogu_official | 151 |
9 | awoo | 149 |
10 | TheScrasse | 146 |
Name |
---|
Firstly note that C mod X1 is less that 10^6. So now create 10^6 nodes starting from 0, 1 ... to 10^6 — 1. Now for every node add an edge for every bucket i.e for node numbered i adding an edge of bucket j means adding edge between i and (i + bucket[j]) % X1. So adding edges like this we get X1 * (number of buckets) number of edges. Now basically our problem is reaching from 0 to C mod X1. So apply djikstra's algorithm with 0 as root and find the shortest route to C mod X1. If the value of shortest path is less than C then clearly we have a solution as coefficient of X1 could be increased appropriately, otherwise there is no solution as the shortest coefficient of X1 would have to be negative which is not allowed