Hello everybody)
help me with problem
we looking for quantity of integer solutions (x,y) equation ; |a|,|b| <=
# | User | Rating |
---|---|---|
1 | tourist | 4009 |
2 | jiangly | 3823 |
3 | Benq | 3738 |
4 | Radewoosh | 3633 |
5 | jqdai0815 | 3620 |
6 | orzdevinwang | 3529 |
7 | ecnerwala | 3446 |
8 | Um_nik | 3396 |
9 | ksun48 | 3390 |
10 | gamegame | 3386 |
# | User | Contrib. |
---|---|---|
1 | cry | 164 |
1 | maomao90 | 164 |
3 | Um_nik | 163 |
4 | atcoder_official | 160 |
5 | adamant | 159 |
6 | -is-this-fft- | 158 |
7 | awoo | 157 |
8 | TheScrasse | 154 |
8 | Dominater069 | 154 |
8 | nor | 154 |
Name |
---|
I found this:
a.y + b.x = x.y
b.x = y.(x-a)
y=(b.x) / (x-a);
x,y are integers so (a|b means b%a=0)
x-a| b.x
x-a| b.x — b.(x-a)
x-a| b.x — b.x + a.b
x-a| a.b
for every z (z|a.b) there is an integer pair (x,y) suitable to all conditions. So the answer is same with quantity of divisors of a.b