How to efficiently calculate the value of $$$ \frac{3^{n}-1}{2} $$$ modulo an even number $$$ p $$$, when the bound on $$$ n $$$ is up to $$$ 10^{18} $$$ and $$$ p $$$ is up to $$$ 10^9 $$$?
# | User | Rating |
---|---|---|
1 | jiangly | 4039 |
2 | tourist | 3841 |
3 | jqdai0815 | 3682 |
4 | ksun48 | 3590 |
5 | ecnerwala | 3542 |
6 | Benq | 3535 |
7 | orzdevinwang | 3526 |
8 | gamegame | 3477 |
9 | heuristica | 3357 |
10 | Radewoosh | 3355 |
# | User | Contrib. |
---|---|---|
1 | cry | 168 |
2 | -is-this-fft- | 165 |
3 | atcoder_official | 160 |
3 | Um_nik | 160 |
5 | djm03178 | 157 |
6 | Dominater069 | 156 |
7 | adamant | 153 |
8 | luogu_official | 152 |
9 | awoo | 151 |
10 | TheScrasse | 147 |
How to efficiently calculate the value of $$$ \frac{3^{n}-1}{2} $$$ modulo an even number $$$ p $$$, when the bound on $$$ n $$$ is up to $$$ 10^{18} $$$ and $$$ p $$$ is up to $$$ 10^9 $$$?
Name |
---|
If
is odd,
is odd, else it is even.
If $$$ka = kb \text{ (mod } km)$$$, then $$$a = b \text{ (mod } m)$$$.
Thus, you can compute $$$x \text{ (mod } 2p)$$$ and then divide by 2 to get $$$x/2 \text{ (mod } p)$$$ (in this example, $$$x = 3^n-1$$$).
Thanks