Given a string. Check if the string is a concatenation of any prefix of this string (any number of times concatenation is possible). If present then print the prefix, otherwise -1.
# | User | Rating |
---|---|---|
1 | tourist | 3856 |
2 | jiangly | 3747 |
3 | orzdevinwang | 3706 |
4 | jqdai0815 | 3682 |
5 | ksun48 | 3591 |
6 | gamegame | 3477 |
7 | Benq | 3468 |
8 | Radewoosh | 3462 |
9 | ecnerwala | 3451 |
10 | heuristica | 3431 |
# | User | Contrib. |
---|---|---|
1 | cry | 167 |
2 | -is-this-fft- | 162 |
3 | Dominater069 | 160 |
4 | Um_nik | 158 |
5 | atcoder_official | 157 |
6 | Qingyu | 155 |
7 | djm03178 | 151 |
7 | adamant | 151 |
9 | luogu_official | 150 |
10 | awoo | 147 |
Given a string. Check if the string is a concatenation of any prefix of this string (any number of times concatenation is possible). If present then print the prefix, otherwise -1.
Name |
---|
Let's prove there are always only two prefixes required if it's possible. Let's say we get the answer with more than two strings: $$$s_1, s_2, ..., s_k$$$. Then we can get a string $$$s_1 + s_2 + ... + s_{k - 1}$$$ using only one prefix.
So all we have to do is to find the suffix, such that it is a prefix either. You can do it using Z-function
UPD: I'm quite stupid I guess
We can solve it using simple polynomial hash method.
For each prefix, we can calculate the hash value of it. And then, we can try to copy it a lot of times, calculating the hash value as the same time, until the length exceed n.
Time complexity is $$$\sum_{i = 1} ^ {n} [n / i] = \Theta(n log n).$$$