you will be given an array. and q query. q and n all less than 100000.
In every query you will be given a k. how many subarray xor less than k?
** I think it can be solved by persistent trie. but i need another solution.
# | User | Rating |
---|---|---|
1 | tourist | 3857 |
2 | jiangly | 3747 |
3 | orzdevinwang | 3706 |
4 | jqdai0815 | 3682 |
5 | ksun48 | 3591 |
6 | gamegame | 3477 |
7 | Benq | 3468 |
8 | Radewoosh | 3463 |
9 | ecnerwala | 3451 |
10 | heuristica | 3431 |
# | User | Contrib. |
---|---|---|
1 | cry | 166 |
2 | -is-this-fft- | 161 |
3 | Qingyu | 160 |
3 | Dominater069 | 160 |
5 | atcoder_official | 158 |
6 | adamant | 155 |
7 | Um_nik | 152 |
8 | djm03178 | 151 |
8 | luogu_official | 151 |
10 | awoo | 148 |
you will be given an array. and q query. q and n all less than 100000.
In every query you will be given a k. how many subarray xor less than k?
** I think it can be solved by persistent trie. but i need another solution.
Name |
---|
Lets rephrase the problem a little bit. Denote by P[i] the XOR of numbers a[1], a[2], ..., a[i]. Now the XOR of subarray [L, R] becomes P[R] XOR P[L — 1] and the problem boils down to finding how many pairs of numbers from a list, when XOR-ed give a number less than K. This problem can be solved in O(NlogN) with the help of the Walsh-Hadamard transform and you can get some insight for the implementation from here: https://csacademy.com/blog/fast-fourier-transform-and-variations-of-it
i only know fast walsh hadamard gives us... all pairs xor/and/or sum. i don't know about this variation. Thanks.