Hello everyone, How to represent negative numbers in balanced ternary?
# | User | Rating |
---|---|---|
1 | tourist | 3985 |
2 | jiangly | 3814 |
3 | jqdai0815 | 3682 |
4 | Benq | 3529 |
5 | orzdevinwang | 3526 |
6 | ksun48 | 3517 |
7 | Radewoosh | 3410 |
8 | hos.lyric | 3399 |
9 | ecnerwala | 3392 |
9 | Um_nik | 3392 |
# | User | Contrib. |
---|---|---|
1 | cry | 169 |
2 | maomao90 | 162 |
2 | Um_nik | 162 |
4 | atcoder_official | 161 |
5 | djm03178 | 158 |
6 | -is-this-fft- | 157 |
7 | adamant | 155 |
8 | awoo | 154 |
8 | Dominater069 | 154 |
10 | luogu_official | 151 |
Hello everyone, How to represent negative numbers in balanced ternary?
Name |
---|
Taken from https://cp-algorithms.com/algebra/balanced-ternary.html (I don't know if it is the formal one).
Suppose you have a negative number x, find the smallest non-negative k such that $$$3^k \geq -x$$$, then $$$3^k+x \geq 0$$$. The corresponding representation is $$$(-1)$$$$$$($$$representation of $$$3^k+x$$$$$$)$$$. For instance $$$x=-17=-27+10$$$, then its representation is $$$(-1)(101)$$$
Remark: $$$()$$$ for illustration only