Would anyone please give me a explanation on 312B - Archer ???
# | User | Rating |
---|---|---|
1 | tourist | 3985 |
2 | jiangly | 3814 |
3 | jqdai0815 | 3682 |
4 | Benq | 3529 |
5 | orzdevinwang | 3526 |
6 | ksun48 | 3517 |
7 | Radewoosh | 3410 |
8 | hos.lyric | 3399 |
9 | ecnerwala | 3392 |
9 | Um_nik | 3392 |
# | User | Contrib. |
---|---|---|
1 | cry | 169 |
2 | maomao90 | 162 |
2 | Um_nik | 162 |
4 | atcoder_official | 161 |
5 | djm03178 | 158 |
6 | -is-this-fft- | 157 |
7 | adamant | 155 |
8 | awoo | 154 |
8 | Dominater069 | 154 |
10 | luogu_official | 150 |
Would anyone please give me a explanation on 312B - Archer ???
Name |
---|
This problem have tow simple solutions:
1) We can sum P(win after 1 step) + P(win after 3 step) + ... + P(win after 2 * i + 1 step) + ... = a / b + (1 — a / b) ^ 1 * (1 — c / d) ^ 1 * p + (1 — a / b) ^ 2 * (1 — c / d) ^ 2 * p + ...(1 — a / b) ^ i * (1 — c / d) ^ i * p + ...
Then we use infinite geometric series formula to calculate it.
2) We can assume p as result. So p = P(win after 1 step) + P(win after 3 step) + ... + P(win after 2 * i + 1 step) + ... = P(win after 1 step) + (1 — a / b) * (1 — c / d) * p = a / b + (1 — a / b) * (1 — c / d) * p
p = (a / b) / (1 — (1 — a / b) * (1 — c / d))
Solution.
Got it... Thanks for nice explanation... :)
Let's denote a/b=p, c/d=r. A turn is the number of SmallR's shot.
The probability of SmallR winning in the first turn is p. The probability of winning in the 2nd turn is (1-p)(1-r)p, because it involves both missing on the 1st turn and SmallR hitting on the 2nd. Similarly, the probability of SmallR winning in the k-th turn is p[(1-p)(1-r)]^(k-1), because the first k turns both of them miss and then SmallR hits.
Then it's clear that the answer is sum(k=1..infty){p[(1-p)(1-r)]^(k-1)}, which is just p times a sum of a geometric series, with the answer p/[1-(1-p)(1-r)].
Thanks a lot... It's clear to me now...
because it involves both missing on the 1st turn and SmallR hitting on the 2nd.
This is the key... Thanks again...