Hi everyone,
(131015-1) / (13-1)
I want to calculate the previous value modulo 36 in an efficient way, how can I do that?
№ | Пользователь | Рейтинг |
---|---|---|
1 | tourist | 3985 |
2 | jiangly | 3814 |
3 | jqdai0815 | 3682 |
4 | Benq | 3529 |
5 | orzdevinwang | 3526 |
6 | ksun48 | 3517 |
7 | Radewoosh | 3410 |
8 | hos.lyric | 3399 |
9 | ecnerwala | 3392 |
9 | Um_nik | 3392 |
Страны | Города | Организации | Всё → |
№ | Пользователь | Вклад |
---|---|---|
1 | cry | 169 |
2 | maomao90 | 162 |
2 | Um_nik | 162 |
4 | atcoder_official | 161 |
5 | djm03178 | 158 |
6 | -is-this-fft- | 157 |
7 | adamant | 155 |
8 | awoo | 154 |
8 | Dominater069 | 154 |
10 | luogu_official | 150 |
Hi everyone,
(131015-1) / (13-1)
I want to calculate the previous value modulo 36 in an efficient way, how can I do that?
Название |
---|
Can you provide a link to the problem?
Sorry it is not a CP problem, I know how to calculate the inverse modulo but in this case the denominator (13-1 = 12) and the modulo 36 are not coprime, so I am not sure how to do the calculation in a fast way and without an overflow happening
Here
Thanks for the reply, but my problem is in the division by 12, will this solve my problem?
$$$(13^{10^{15}}-1) = (13-1)(13^{10^{15}-1}+13^{10^{15}-2}+...+13^1+1)$$$
$$$(13^{10^{15}}-1)/(13-1)= (13^{10^{15}-1}+13^{10^{15}-2}+...+13^1+1)$$$
$$$13^n \mod 36 = \begin{cases} 1(n \equiv 0 \mod 3) \\ 13(n \equiv 1 \mod 3) \\ 25(n \equiv 2 \mod 3) \end{cases}$$$
Then, you can just sum up this.
Thank you so much, this is an awesome solution. How to generalize it to find
(an-1)/(a-1) mod m ?
If m is small(<=10^6), you can try above approach (to find a cycle of a^k mod m) in O(m). Or, using modular inverse if you can. I don't have further idea, sorry...
Thank you so much