Can all the heavy-light decomposition (HLD) problems be solved using Binary lifting technique or do I need to learn HLD too? Thanks for helping, I am new to this field.
Extra: Stress away
# | User | Rating |
---|---|---|
1 | tourist | 3856 |
2 | jiangly | 3747 |
3 | orzdevinwang | 3706 |
4 | jqdai0815 | 3682 |
5 | ksun48 | 3591 |
6 | gamegame | 3477 |
7 | Benq | 3468 |
8 | Radewoosh | 3462 |
9 | ecnerwala | 3451 |
10 | heuristica | 3431 |
# | User | Contrib. |
---|---|---|
1 | cry | 167 |
2 | -is-this-fft- | 162 |
3 | Dominater069 | 160 |
4 | Um_nik | 158 |
5 | atcoder_official | 157 |
6 | Qingyu | 156 |
7 | djm03178 | 152 |
7 | adamant | 152 |
9 | luogu_official | 150 |
10 | awoo | 147 |
Can all the heavy-light decomposition (HLD) problems be solved using Binary lifting technique or do I need to learn HLD too? Thanks for helping, I am new to this field.
Extra: Stress away
Name |
---|
HLD seems to be more difficult and has worse complexity, but it's somehow well-known. Of course, there exists a problem, that requires HLD.
To be more certain, binary lifting technique allows you to calculate some value over some path. Heavy-light decomposition allows it too, but it also allows updates. You can't update fast all precomputed values for binary lifting. If $$$n = 2^k$$$ for some $$$k$$$, there could be $$$n / 2$$$ ways of length $$$n / 2$$$ over a vertex. It is already too many.