Hello, I'm a beginner in competitive programming.
I really enjoyed the 1520B problem called Ordinary Numbers : https://codeforces.net/problemset/problem/1520/B
I observed that @MikeMirzayanov's tutorial uses a brute-force method to solve this : https://codeforces.net/blog/entry/90342
However, it is possible, to solve the problem without using bruteforce, at all.
Here's my solution which has been accepted by the virtual judge : https://codeforces.net/contest/1520/submission/119706686
I hope it's useful to you all. After all, we'll all learn together.
Thank you :)
// URL : https://codeforces.net/problemset/problem/1520/B
// NOTE : Really good problem. Loved the logic behind it. AMAZING PROBLEM!!!
//
#include <iostream>
#include <algorithm>
#include <cmath>
#pragma GCC optimize("O3")
#define sl long long
#define nl "\n";
using namespace std;
sl memo[100];
int main()
{
ios_base::sync_with_stdio(false);
cin.tie(nullptr);
sl t;
cin >> t;
// create a memoization table using which we can create unique numbers
// just from the first digits of some number we're currently analyzing
//
memo[0] = 0;
memo[1] = 1;
memo[2] = 11;
memo[3] = 111;
memo[4] = 1111;
memo[5] = 11111;
memo[6] = 111111;
memo[7] = 1111111;
memo[8] = 11111111;
memo[9] = 111111111;
memo[10] = 1111111111;
memo[11] = 11111111111;
memo[12] = 111111111111;
memo[13] = 1111111111111;
// for [0] = 0 unique numbers as range is 1<=n<=10^9
// for [1:10] = 9 unique numbers for 1 digit numbers
// for [10:100] = 9 unique numbers for 2 digit numbers
// for [100:1000] = 9 unique numbers for 3 digit numbers
// for [1000:10,000] = 9 unique numbers for 4 digit numbers
//
while(t--)
{
sl n;
cin >> n;
// number of digits in the number
sl ndigits = floor(log10(n)+1);
// maximum possible unique numbers for a digit of length ndigits
sl maxunos = ndigits * 9;
// get the first digit of n
sl fdigit = n/pow(10, ndigits-1);
// get the unique number that starts with fdgit and ends with fdigit
// and contains ndigits digits : 12345 -> 11111 ; 41234 -> 4444
//
sl m = memo[ndigits]*fdigit;
// incase the given n is not a unique number, we need to analyze
// what's the correct number of unique numbers present in the given
// range. we need to do this, since maxunos needs to be corrected.
//
sl neg = 0;
if(n<m)
{
neg = 9-fdigit+1;
}
else
if(n>=m)
{
neg = 9-fdigit;
}
// correct answer
sl ans = maxunos - neg;
cout << ans << nl;
}
cout << flush;
return 0;
}