For Problem B, would the maximum $$$a_{i}$$$|$$$a_{j}$$$ = 2n-1 -> so f(n-1 , n) = n^2-n-k-2nk?
How would you solve f(i,n) > f(n-1,n) in that case?
Problem: 1554B - Cobb
Editorial : https://codeforces.net/blog/entry/93321
№ | Пользователь | Рейтинг |
---|---|---|
1 | tourist | 3985 |
2 | jiangly | 3814 |
3 | jqdai0815 | 3682 |
4 | Benq | 3529 |
5 | orzdevinwang | 3526 |
6 | ksun48 | 3517 |
7 | Radewoosh | 3410 |
8 | hos.lyric | 3399 |
9 | ecnerwala | 3392 |
9 | Um_nik | 3392 |
Страны | Города | Организации | Всё → |
№ | Пользователь | Вклад |
---|---|---|
1 | cry | 169 |
2 | maomao90 | 162 |
2 | Um_nik | 162 |
4 | atcoder_official | 161 |
5 | djm03178 | 158 |
6 | -is-this-fft- | 157 |
7 | adamant | 155 |
8 | awoo | 154 |
8 | Dominater069 | 154 |
10 | luogu_official | 150 |
Cobb — 1554B
For Problem B, would the maximum $$$a_{i}$$$|$$$a_{j}$$$ = 2n-1 -> so f(n-1 , n) = n^2-n-k-2nk?
How would you solve f(i,n) > f(n-1,n) in that case?
Problem: 1554B - Cobb
Editorial : https://codeforces.net/blog/entry/93321
Название |
---|