Summation of another weirder function

Revision en3, by rossatron, 2015-06-30 08:16:33

Let n is a positive integer.

n = p1e1p2e2...pkek is the complete prime factorization of n.

Let me define a function f(n)

f(n) = p1c1p2c2...pkck where ck = ek if ek is divisible by pk, otherwise ck = ek - 1

Example:

72 = 2332, so f(72) = 23 - 132 - 1 = 2231 = 12

144 = 2432, so f(144) = 2432 - 1 = 2431 = 48, as 4 is divisible by 2, exponent of 2 remains same.

Now let

Example: F(10) = 1 + 1 + 4 + 1 + 1 + 1 + 4 + 3 + 1 = 17

Now I want to evaluate F(N) for a fairly large value of N, say 1014. Can I do it without factorizing each number?

It is more difficult than the previous one.

Tags number theory, summation

History

 
 
 
 
Revisions
 
 
  Rev. Lang. By When Δ Comment
en3 English rossatron 2015-06-30 08:16:33 2 Tiny change: 'say $10^{12}$. Can I ' -> 'say $10^{14}$. Can I '
en2 English rossatron 2015-06-30 07:41:16 135
en1 English rossatron 2015-06-30 07:30:43 951 Initial revision (published)