Manthan, Codefest 16: Editorials
Difference between en2 and en3, changed 2 character(s)
**Problem A: Ebony Ivory**↵

The problem is to find if there exists a solution to the equation:↵
- $ ax+by=c $↵
where x and y are both positive integers. The limits are small enough to try all values of x and correspondingly try if such a y exists. The question can also be solved more efficiently using the fact that an integral solution to this problem exists iff $ gcd(a,b) | c $. We just have to make one more check to ensure a positive integral solution.↵

Complexity: $ O(log(min(a,b)) $↵

**Problem B: A Trivial Problem**↵

We know how to calculate number of zeros in the factorial of a number. For finding the range of numbers having number of zeros equal to a constant, we can use binary search. Though, the limits are small enough to try and find the number of zeros in factorial of all numbers of the given range.↵

Complexity: $ O(log(n)^2) $↵

**Problem C: Spy Syndrome 2**↵

The given encrypted string can be reversed initially. Then $ dp[i] $ can be defined as the index at which the next word should start such that the given string can be formed using the given dictionary. Rabin Karp hashing can be used to compute $dp[i]$ efficiently.↵

Also, care must be taken that in the answer the words have to be printed in the correct casing as they appear in the dictionary.↵

Complexity: $ O( n * w) $ where $n$ is the length of the encrypted string, $w$ is the maximum length of any word in the dictionary.↵

**Problem D: Fibonacci-ish**↵

The key to the solution is that the complete Fibonacci-ish sequence is determined by the first two terms. Another thing to note is that for the given constraints on $ a[i] $, the length of the Fibonacci-ish sequence is of logarithmic order (the longest sequence possible under current constraints was of length~90) except for the case where $ a[i]=a[j]=0 $, where the length can become as long as the length of the given sequence. Thus, the case for 0 has to be handled separately.↵

Complexity: $ O( n * 
lgn * l ) $  where $n$ is the length of the given sequence and $l$ is the length of the longest Fibonacci-ish subsequence.↵

**Problem E: Startup funding**↵

Let us denote the number of visitors in the ith week by $ v[i] $ and the revenue in the ith week by $ r[i] $.↵

Let us define $ z[i] = max(min(\ 100*max(v[i...j]) , min(c[i...j])))\ \ for\ all\ (j>=i) $. Note that $ max(v[i...j]) $ is an increasing function in $ j $ and $ min(r[i...j]) $ is a decreasing function in j. Thus, for all i, $z[i]$ can be computed using RMQ sparse table in combination with binary search.↵

Thus the question reduces to selecting $k$ values randomly from the array $z$. Let us suppose we select these $k$ values and call the minimum of these values $x$. Now, $x$ is the random variable whose expected value we need to find. If we sort $z$ in non-decreasing order:↵

$ E(X) = (z[1] * C(n-1,k-1) + z[2] * C(n-2,k-1) + z[3] * C(n-3,k-1)....)/ (C(n,k)) $↵

where $ C(n,k) $ is the number of ways of selecting $ k $ objects out of n. Since $ C(n,k) $ will be big values, we should not compute $ C(n,k) $ explicitly and just write them as ratios of the previous terms. Example: $ C(n-1,k-1)/C(n,k)=k/n $ and so on.↵

Complexity: $ O( n * lg n ) $↵

**Problem F: The Chocolate Spree**↵

Editorial for the problem F will be posted shortly.↵

**Problem G: Yash and Trees**↵

Perform an euler tour (basically a post/pre order traversal) of the tree and store it as an array.↵
Now, the nodes of the subtree are stored are part of the array as a subarray (contiguous subsequence). Query Type 2 requires you to essentially answer the number of nodes in the subtree such that their value modulo $m$ is a prime. Since, $m \le 1000 $, we can build a segment tree(with lazy propagation) where each node has a bitset, say $b$ where $b[i]$ is on iff a value $x$ exists in the segment represented by that node, such that $  i \equiv x \mod m $. The addition operations then are simply reduced to bit-rotation within the bitset of the node.↵

Complexity: $O(n * lg n * f ) $, where $n$ is the cardinality of the vertices of the tree, $f$ is a small factor denoting the time required for conducting bit rotations on a bitset of size 1000. ↵

**Problem H: Fibonacci-ish II**↵

The problem can be solved by taking the queries offline and using a square-root decomposition trick popularly called as “Mo’s algorithm”. Apart from that, segment tree(with lazy propagation) has to be maintained for the Fibonacci-ish potential of the elements in the current [l,r] range. The fact used in the segment tree for lazy propagation is:↵

$ F(k+1)*(a_1*F(i)+a_2*F(i+1)...)+F(k)*(a_1*F(i-1)+a_2*F(i)+....) = (a_1*F(i+k)+a_2*F(i+k+1)....) $↵

Complexity: $ O((n+q) * \sqrt{n+q}*log(n))$↵

History

 
 
 
 
Revisions
 
 
  Rev. Lang. By When Δ Comment
en9 English mkrjn99 2016-03-27 17:07:41 651
en8 English mkrjn99 2016-03-11 02:02:06 68
en7 English mkrjn99 2016-03-11 00:56:29 795
en6 English mkrjn99 2016-02-29 17:43:23 51
en5 English mkrjn99 2016-02-28 08:15:10 1027
en4 English mkrjn99 2016-02-27 10:26:20 1 Tiny change: 'quation:\n- $ ax+by=c' -> 'quation:\n $ ax+by=c'
en3 English mkrjn99 2016-02-27 10:17:42 2 Tiny change: ' $ O( n * lgn * l ) $ ' -> ' $ O( n * n * l ) $ '
en2 English mkrjn99 2016-02-27 09:08:55 4 (published)
en1 English mkrjn99 2016-02-27 09:07:06 4752 Initial revision (saved to drafts)