Basically the title. The problem statement can be found here. No idea how to solve it efficiently.
# | User | Rating |
---|---|---|
1 | tourist | 3856 |
2 | jiangly | 3747 |
3 | orzdevinwang | 3706 |
4 | jqdai0815 | 3682 |
5 | ksun48 | 3591 |
6 | gamegame | 3477 |
7 | Benq | 3468 |
8 | Radewoosh | 3462 |
9 | ecnerwala | 3451 |
10 | heuristica | 3431 |
# | User | Contrib. |
---|---|---|
1 | cry | 167 |
2 | -is-this-fft- | 162 |
3 | Dominater069 | 160 |
4 | Um_nik | 158 |
5 | atcoder_official | 157 |
6 | Qingyu | 156 |
7 | adamant | 151 |
7 | djm03178 | 151 |
9 | luogu_official | 150 |
10 | awoo | 146 |
smallest K such that number of arrangements of prime factors of K equals N?
Basically the title. The problem statement can be found here. No idea how to solve it efficiently.
Rev. | Lang. | By | When | Δ | Comment | |
---|---|---|---|---|---|---|
en6 |
![]() |
pabloskimg | 2018-10-29 20:56:46 | 125 | ||
en5 |
![]() |
pabloskimg | 2018-10-29 20:46:41 | 4 | Tiny change: 'r)!}{k_1! + ... + k_r!} < 2' -> 'r)!}{k_1! * ... * k_r!} < 2' | |
en4 |
![]() |
pabloskimg | 2018-10-29 20:45:40 | 605 | Tiny change: '_r$ ($k_i >= k_j$ for ' -> '_r$ ($k_i \geq k_j$ for ' | |
en3 |
![]() |
pabloskimg | 2018-10-28 19:15:30 | 30 | Tiny change: 'ficiently.' -> 'ficiently.\n\nUPDATE: why the downvotes?' | |
en2 |
![]() |
pabloskimg | 2018-10-27 17:43:02 | 1 | ||
en1 |
![]() |
pabloskimg | 2018-10-27 17:41:36 | 227 | Initial revision (published) |
Name |
---|