According to Wikipedia, an RMQ can be built with $$$O(n)$$$ memory ($$$O(n)$$$ precomp) that can answer queries in O(1).
# | User | Rating |
---|---|---|
1 | jiangly | 4039 |
2 | tourist | 3841 |
3 | jqdai0815 | 3682 |
4 | ksun48 | 3590 |
5 | ecnerwala | 3542 |
6 | Benq | 3535 |
7 | orzdevinwang | 3526 |
8 | gamegame | 3477 |
9 | heuristica | 3357 |
10 | Radewoosh | 3355 |
# | User | Contrib. |
---|---|---|
1 | cry | 168 |
2 | -is-this-fft- | 165 |
3 | atcoder_official | 160 |
3 | Um_nik | 160 |
5 | djm03178 | 158 |
6 | Dominater069 | 156 |
7 | adamant | 153 |
8 | luogu_official | 152 |
9 | awoo | 151 |
10 | TheScrasse | 147 |
Enumerating all Binary Trees to build O(n)/O(1) RMQ
According to Wikipedia, an RMQ can be built with $$$O(n)$$$ memory ($$$O(n)$$$ precomp) that can answer queries in O(1).
Rev. | Lang. | By | When | Δ | Comment | |
---|---|---|---|---|---|---|
en9 | SecondThread | 2019-11-24 21:14:02 | 0 | (published) | ||
en8 | SecondThread | 2019-11-24 21:13:06 | 18 | Tiny change: 'lockSize^2)$.\n\nBut' -> 'lockSize^2 * nCartesianTrees)$.\n\nBut' | ||
en7 | SecondThread | 2019-11-24 21:11:49 | 149 | |||
en6 | SecondThread | 2019-11-24 21:08:55 | 1011 | |||
en5 | SecondThread | 2019-11-24 20:49:19 | 8 | |||
en4 | SecondThread | 2019-11-24 20:47:34 | 2 | Tiny change: 'ilt with _O(n)_ memory (' -> 'ilt with __O(n)__ memory (' | ||
en3 | SecondThread | 2019-11-24 20:47:26 | 4 | Tiny change: 'uilt with `O(n)` memory (O' -> 'uilt with _O(n)_ memory (O' | ||
en2 | SecondThread | 2019-11-24 20:45:24 | 3 | Tiny change: 'uilt with O(n) memory (O' -> 'uilt with `O(n)` memory (O' | ||
en1 | SecondThread | 2019-11-24 20:44:50 | 161 | Initial revision (saved to drafts) |
Name |
---|