Given parameters $$$a, b, c$$$; $$$max(a,b,c) <= 9000$$$. Your task is to compute $$$\sum\limits_{x = 1}^{a} \sum\limits_{y = 1}^{b} \sum\limits_{z = 1}^{c} d(xyz) $$$ testing :
# | User | Rating |
---|---|---|
1 | tourist | 3856 |
2 | jiangly | 3747 |
3 | orzdevinwang | 3706 |
4 | jqdai0815 | 3682 |
5 | ksun48 | 3591 |
6 | gamegame | 3477 |
7 | Benq | 3468 |
8 | Radewoosh | 3462 |
9 | ecnerwala | 3451 |
10 | heuristica | 3431 |
# | User | Contrib. |
---|---|---|
1 | cry | 167 |
2 | -is-this-fft- | 162 |
3 | Dominater069 | 160 |
4 | Um_nik | 158 |
5 | atcoder_official | 157 |
6 | Qingyu | 156 |
7 | djm03178 | 151 |
7 | adamant | 151 |
9 | luogu_official | 150 |
10 | awoo | 147 |
Compute sum of divisor count function for triplets of positive integers
Given parameters $$$a, b, c$$$; $$$max(a,b,c) <= 9000$$$. Your task is to compute $$$\sum\limits_{x = 1}^{a} \sum\limits_{y = 1}^{b} \sum\limits_{z = 1}^{c} d(xyz) $$$ testing :
Rev. | Lang. | By | When | Δ | Comment | |
---|---|---|---|---|---|---|
en7 |
![]() |
ace_loves_xq | 2020-11-27 13:16:50 | 19 | Tiny change: '(x*y*z) $ where $ ' -> '(x*y*z) $ by modulo $2^30$ where $ ' | |
en6 |
![]() |
ace_loves_xq | 2020-11-27 12:26:53 | 18 | Reverted to en4 | |
en5 |
![]() |
ace_loves_xq | 2020-11-27 12:25:56 | 18 | ||
en4 |
![]() |
ace_loves_xq | 2020-11-27 12:21:45 | 48 | ||
en3 |
![]() |
ace_loves_xq | 2020-11-27 12:17:34 | 66 | ||
en2 |
![]() |
ace_loves_xq | 2020-11-27 12:16:05 | 331 | Tiny change: 'z)$, I use applied p' -> 'z)$, I used applied p' (published) | |
en1 |
![]() |
ace_loves_xq | 2020-11-27 12:12:49 | 236 | Initial revision (saved to drafts) |
Name |
---|