Given parameters $$$a, b, c$$$; $$$max(a,b,c) <= 9000$$$. Your task is to compute $$$\sum\limits_{x = 1}^{a} \sum\limits_{y = 1}^{b} \sum\limits_{z = 1}^{c} d(xyz) $$$ testing :
# | User | Rating |
---|---|---|
1 | jiangly | 4039 |
2 | tourist | 3841 |
3 | jqdai0815 | 3682 |
4 | ksun48 | 3590 |
5 | ecnerwala | 3542 |
6 | Benq | 3535 |
7 | orzdevinwang | 3526 |
8 | gamegame | 3477 |
9 | heuristica | 3357 |
10 | Radewoosh | 3355 |
# | User | Contrib. |
---|---|---|
1 | cry | 168 |
2 | -is-this-fft- | 165 |
3 | atcoder_official | 160 |
3 | Um_nik | 160 |
5 | djm03178 | 157 |
6 | Dominater069 | 156 |
7 | adamant | 153 |
8 | luogu_official | 152 |
9 | awoo | 151 |
10 | TheScrasse | 147 |
Compute sum of divisor count function for triplets of positive integers
Given parameters $$$a, b, c$$$; $$$max(a,b,c) <= 9000$$$. Your task is to compute $$$\sum\limits_{x = 1}^{a} \sum\limits_{y = 1}^{b} \sum\limits_{z = 1}^{c} d(xyz) $$$ testing :
Rev. | Lang. | By | When | Δ | Comment | |
---|---|---|---|---|---|---|
en7 | ace_loves_xq | 2020-11-27 13:16:50 | 19 | Tiny change: '(x*y*z) $ where $ ' -> '(x*y*z) $ by modulo $2^30$ where $ ' | ||
en6 | ace_loves_xq | 2020-11-27 12:26:53 | 18 | Reverted to en4 | ||
en5 | ace_loves_xq | 2020-11-27 12:25:56 | 18 | |||
en4 | ace_loves_xq | 2020-11-27 12:21:45 | 48 | |||
en3 | ace_loves_xq | 2020-11-27 12:17:34 | 66 | |||
en2 | ace_loves_xq | 2020-11-27 12:16:05 | 331 | Tiny change: 'z)$, I use applied p' -> 'z)$, I used applied p' (published) | ||
en1 | ace_loves_xq | 2020-11-27 12:12:49 | 236 | Initial revision (saved to drafts) |
Name |
---|