In 1500A - Going Home, how can we construct a sequence of $$$n$$$ integers such that the answer is NO.
№ | Пользователь | Рейтинг |
---|---|---|
1 | jiangly | 4039 |
2 | tourist | 3841 |
3 | jqdai0815 | 3682 |
4 | ksun48 | 3590 |
5 | ecnerwala | 3542 |
6 | Benq | 3535 |
7 | orzdevinwang | 3526 |
8 | gamegame | 3477 |
9 | heuristica | 3357 |
10 | Radewoosh | 3355 |
Страны | Города | Организации | Всё → |
№ | Пользователь | Вклад |
---|---|---|
1 | cry | 168 |
2 | -is-this-fft- | 165 |
3 | atcoder_official | 160 |
3 | Um_nik | 160 |
5 | djm03178 | 157 |
6 | Dominater069 | 156 |
7 | adamant | 153 |
8 | luogu_official | 152 |
9 | awoo | 151 |
10 | TheScrasse | 147 |
A problem(inspired from round 707 div1-A)
In 1500A - Going Home, how can we construct a sequence of $$$n$$$ integers such that the answer is NO.
Rev. | Язык | Кто | Когда | Δ | Комментарий | |
---|---|---|---|---|---|---|
en1 | hossainzarif | 2021-03-16 06:31:41 | 136 | Initial revision (published) |
Название |
---|