Given an array $$$A$$$ of $$$N$$$ integers . Find the maximum of value of $$$i\ -\ j$$$ such that : $$$\newline$$$ $$$1)\ j\ \le\ i \newline$$$ $$$2)\ A[j]\ \le\ A[i] \newline$$$
Note : $$$i$$$ and $$$j$$$ are 0-based indices
Constraints : $$$ N \le 10^6 , A[i]\ \le\ 10^9\ for\ 0\ \le i\ \le\ N-1\newline $$$
Ex :
- $$$A\ =\ [1,2,3,4,5]$$$
$$$j\ =\ 0\ ,\ i\ =\ 4$$$ gives maximum difference of 4 satisfying the given conditions - $$$A\ =\ [8,4,8,7,6,6,3]$$$
$$$j\ =\ 1\ ,\ i\ =\ 5$$$ gives maximum difference of 4 satisfying the given conditions