The official editorial of the Half Sequence says
This
Reason they give
But, what is the proof behind it? I mean what is the intution behind saying this? Can someone give a formal proof for it.
№ | Пользователь | Рейтинг |
---|---|---|
1 | tourist | 3985 |
2 | jiangly | 3814 |
3 | jqdai0815 | 3682 |
4 | Benq | 3529 |
5 | orzdevinwang | 3526 |
6 | ksun48 | 3517 |
7 | Radewoosh | 3410 |
8 | hos.lyric | 3399 |
9 | ecnerwala | 3392 |
9 | Um_nik | 3392 |
Страны | Города | Организации | Всё → |
№ | Пользователь | Вклад |
---|---|---|
1 | cry | 169 |
2 | maomao90 | 162 |
2 | Um_nik | 162 |
4 | atcoder_official | 161 |
5 | djm03178 | 158 |
6 | -is-this-fft- | 157 |
7 | adamant | 155 |
8 | awoo | 154 |
8 | Dominater069 | 154 |
10 | luogu_official | 150 |
What is the proof behind Half Sequence's Solution (Codechef Cook-Off) ?
The official editorial of the Half Sequence says
For N > 18 (practically, even 16), remove all odd numbers from the input. If we have atleast (N+1)/2 elements remaining and if their GCD is 1 then we have a solution.
Observe that any single number (<=10^9) can be made up of atmost 9 distinct prime numbers. This means that if GCD([B_0, B_1,..., B_N]) = 1, then there must exist atleast one subset of length at most 9 whose elements have GCD=1.
But, what is the proof behind it? I mean what is the intution behind saying this? Can someone give a formal proof for it.
Название |
---|