Could anyone suggest some problems which utilize Dilworth's theorem? Thanks in advance :)
# | User | Rating |
---|---|---|
1 | jiangly | 4039 |
2 | tourist | 3841 |
3 | jqdai0815 | 3682 |
4 | ksun48 | 3590 |
5 | ecnerwala | 3542 |
6 | Benq | 3535 |
7 | orzdevinwang | 3526 |
8 | gamegame | 3477 |
9 | heuristica | 3357 |
10 | Radewoosh | 3355 |
# | User | Contrib. |
---|---|---|
1 | cry | 168 |
2 | -is-this-fft- | 165 |
3 | atcoder_official | 160 |
3 | Um_nik | 160 |
5 | djm03178 | 158 |
6 | Dominater069 | 156 |
7 | adamant | 153 |
8 | luogu_official | 152 |
9 | awoo | 151 |
10 | TheScrasse | 147 |
Could anyone suggest some problems which utilize Dilworth's theorem? Thanks in advance :)
Name |
---|
MDOLLS on SPOJ uses Dilworth's theorem.
Appreciated :D
The classical O(N lg N) algorithm for longest increasing subsequence (LIS) can be seen as an application of Dilworth's Theorem. See here: http://www.geeksforgeeks.org/longest-monotonically-increasing-subsequence-size-n-log-n/
A problem from the third round of 2015 Facebook Hacker Cup
https://www.facebook.com/hackercup/problem/847639175277938/
Solution: https://www.facebook.com/notes/1056536891028878
Another good problem (Dilworth's on longest increasing subsequence) is Cow Jog from USACO December 2014.