Could anyone suggest some problems which utilize Dilworth's theorem? Thanks in advance :)
# | User | Rating |
---|---|---|
1 | tourist | 3993 |
2 | jiangly | 3743 |
3 | orzdevinwang | 3707 |
4 | Radewoosh | 3627 |
5 | jqdai0815 | 3620 |
6 | Benq | 3564 |
7 | Kevin114514 | 3443 |
8 | ksun48 | 3434 |
9 | Rewinding | 3397 |
10 | Um_nik | 3396 |
# | User | Contrib. |
---|---|---|
1 | cry | 167 |
2 | Um_nik | 163 |
3 | maomao90 | 162 |
3 | atcoder_official | 162 |
5 | adamant | 159 |
6 | -is-this-fft- | 158 |
7 | awoo | 155 |
8 | TheScrasse | 154 |
9 | Dominater069 | 153 |
10 | djm03178 | 152 |
Could anyone suggest some problems which utilize Dilworth's theorem? Thanks in advance :)
Name |
---|
MDOLLS on SPOJ uses Dilworth's theorem.
Appreciated :D
The classical O(N lg N) algorithm for longest increasing subsequence (LIS) can be seen as an application of Dilworth's Theorem. See here: http://www.geeksforgeeks.org/longest-monotonically-increasing-subsequence-size-n-log-n/
A problem from the third round of 2015 Facebook Hacker Cup
https://www.facebook.com/hackercup/problem/847639175277938/
Solution: https://www.facebook.com/notes/1056536891028878
Another good problem (Dilworth's on longest increasing subsequence) is Cow Jog from USACO December 2014.