Блог пользователя D_Coder_03

Автор D_Coder_03, история, 4 года назад, По-английски

PROBLEM STATEMENT :

You have given 4 numbers A, B, C, D and you have to perform an algorithm:-

int sum=0;

for(int i=A;i<=B;i++) {

for(int j=C;j<=D;j++)
    sum+=i^j;

}

As the sum could be very large, compute it modulo 1000000007 (10e9+7).

Constraints : 1<=A,B,C,D<=1000000000

Time Limit — 1 sec

INPUT :- 4 integers A,B,C,D is given.

OUTPUT :- Print the sum after performing the algorithm.

EXAMPLE INPUT:- 1 2 3 4

EXAMPLE OUTPUT:- 14

EXPLANATION :- 1^3+1^4+2^3+2^4

2 + 5 + 1 + 6 = 14

This problem was asked in my recent coding round of Uber. Can anyone help me with its approach?

  • Проголосовать: нравится
  • +19
  • Проголосовать: не нравится

»
4 года назад, # |
  Проголосовать: нравится +26 Проголосовать: не нравится

It should be sufficient to just count contribution of each bit into the answer separately.

  • »
    »
    4 года назад, # ^ |
      Проголосовать: нравится 0 Проголосовать: не нравится

    But we cannot traverse from A to B or from C to D, then how will we count then contribution of each bit?...could you elaborate your answer more?

    • »
      »
      »
      4 года назад, # ^ |
        Проголосовать: нравится +8 Проголосовать: не нравится

      for example i has 1 at certain places(let say it has 1 at position x) so when you will exor it with j you will add 2^x if j has 0 at that place or 0 otherwise.

      Therefore for every bit from 0 to 63rd bit you have to

      2^x*(count(numbers with 1 at x in a to b)*count(numbers with 0 at x in c to d)+count(numbers with 0 at x in a to b )*count(numbers with 1 at x in c to d))

      • »
        »
        »
        »
        4 года назад, # ^ |
          Проголосовать: нравится +6 Проголосовать: не нравится

        Understood!!

        • »
          »
          »
          »
          »
          4 года назад, # ^ |
            Проголосовать: нравится +3 Проголосовать: не нравится

          a similar question came in july lunchtime/cook-off .

          u may see it's editorial for better visualization.

        • »
          »
          »
          »
          »
          4 года назад, # ^ |
          Rev. 2   Проголосовать: нравится +1 Проголосовать: не нравится

          If u did understood , can u explain me pls, I agree we'll have to find the number of set bits at some position x from 'a' to 'b' and number of unset bits from 'c' to 'd' and same vice versa ...

          But even in that we would have to iterate over entire range from a to b and from c to d , which would still in worst case take O(n) time and that won't work here.

          Pls if possible explain me , I know I am wrong somewhere

  • »
    »
    4 года назад, # ^ |
    Rev. 3   Проголосовать: нравится +6 Проголосовать: не нравится

    Hi Everyone, please I want a verification for my method or point out if I am wrong. let $$$A_1,A_2...A_k$$$ are the numbers in range $$$[A,B]$$$ and similarly let $$$C_1,C_2...C_m$$$ are the numbers in range $$$[C,D]$$$ so basically I have to calculate $$$\displaystyle \sum\limits_{i = 1}^k\displaystyle \sum\limits_{j = 1}^m A_i \,xor\,C_j $$$. but we know that $$$A_i \,xor\,C_j=(A_i +C_j)-2(A_i\,and\,C_j)$$$ also we know that $$$A\,and\,B+A\,and\,B=A\,and\,(B+C)$$$. Now let $$$\displaystyle \sum\limits_{j = 1}^mC_j=S_1$$$. So our inner summation $$$\displaystyle \sum\limits_{j = 1}^m A_i \,xor\,C_j $$$ becomes $$$mA_i+S_1-2(A_i\,and\,S_1)$$$. Now let $$$\displaystyle \sum\limits_{i= 1}^kA_i=S_2$$$. So $$$\displaystyle \sum\limits_{i = 1}^k (mA_i+S_1-2(A_i\,and\,S_1))$$$ is our final answer and it equals $$$m*S_2+k*S_1-2*(S_1\,and\,S_2).$$$ Since we can find $$$S_1,S_2$$$ in constant time so time complexity is $$$O(1).$$$ Please point out anyone if I am wrong.

»
4 года назад, # |
  Проголосовать: нравится 0 Проголосовать: не нравится

Geometric progression sum with binary exponentiation

  • »
    »
    4 года назад, # ^ |
      Проголосовать: нравится +7 Проголосовать: не нравится

    Not understanding the approach to it, can you explain your approach more clearly?

  • »
    »
    4 года назад, # ^ |
      Проголосовать: нравится 0 Проголосовать: не нравится

    Hey, I think you misunderstood the question (and I also). i^j is i xor j not i raised to j.

    • »
      »
      »
      4 года назад, # ^ |
        Проголосовать: нравится +1 Проголосовать: не нравится

      Well it was mentioned there that '^' means xor...I forgot to mention that in the blog

»
4 года назад, # |
  Проголосовать: нравится +8 Проголосовать: не нравится

just off topic: It was on-campus or off-campus?

»
4 года назад, # |
  Проголосовать: нравится +16 Проголосовать: не нравится

Just count number of set bits for each position(bit) in A to B and same for C to D. Then ans is just contribution of each bit ie. For each bit contribution is ((no. of set bits in A-B)*(no. of unset C-D)+(no. of set bits in C-D)*(no. of unset A-B))*(2^position). Hope this helps.

  • »
    »
    4 года назад, # ^ |
      Проголосовать: нравится 0 Проголосовать: не нравится

    But bro we cannot traverse even from A to B or from C to D so how will we count the set and unset bits?

    • »
      »
      »
      4 года назад, # ^ |
        Проголосовать: нравится +20 Проголосовать: не нравится

      Hint : For the ith bit, there's a pattern and pattern length is 2^(i+1).

      • »
        »
        »
        »
        4 года назад, # ^ |
          Проголосовать: нравится +1 Проголосовать: не нравится

        Ohh...okay okay..understood how the concept will work..Thanks!

      • »
        »
        »
        »
        4 года назад, # ^ |
        Rev. 2   Проголосовать: нравится 0 Проголосовать: не нравится

        Hi can you explain about the pattern? I cannot understand ur statement.

        • »
          »
          »
          »
          »
          4 года назад, # ^ |
          Rev. 2   Проголосовать: нравится +6 Проголосовать: не нравится

          For every ith bit there is a pattern of they change....for ex- 0-7

          0000, 0001, 0010, 0011, 0100, 0101, 0110, 0111,

          0th bit repeats pattern at 2 , 1st bit at 4 , 2nd bit at 8 and so on...

          Hope you understand!

»
4 года назад, # |
  Проголосовать: нравится +11 Проголосовать: не нравится

pastebin link code if u want, (not thoroughly tested).

  • »
    »
    4 года назад, # ^ |
      Проголосовать: нравится 0 Проголосовать: не нравится

    Did you calculated each bit contribution for A to B and C to D with this code?

    • »
      »
      »
      4 года назад, # ^ |
        Проголосовать: нравится +3 Проголосовать: не нравится

      I calculated until R at ith position bit,

      Observation ::

      1] at ith position zeros are 2^i — 1, we remove that from R

      2] Now there alternating pattern of 1 and 0 with each length of 2^(i+1) , you can calculate that by quotient and remainder dividing by 2^(i+1)

      • »
        »
        »
        »
        4 года назад, # ^ |
        Rev. 2   Проголосовать: нравится 0 Проголосовать: не нравится

        Can you please explain why did you subtract 2^i-1 ?

        If we start from 0, then we can say that the pattern at ith position is (0000..2^i times) and then (1111....2^i times).

        We calculate number of zeros in [L,R] is = zeros[0,R] — zeros[0,L] . Number of ones is (R-L+1)-(no of zeros).

»
4 года назад, # |
  Проголосовать: нравится +53 Проголосовать: не нравится

wow i didnt know that taxi drivers should be good at cp nowadays, what a great time we live in!

»
4 года назад, # |
  Проголосовать: нравится +6 Проголосовать: не нравится

This problem ultimately reduces to "Find number of setbits of ith bit for numbers between range x to y"

To find this there is a pattern, run this prog you will understand https://ideone.com/vMaCNs

»
4 года назад, # |
  Проголосовать: нравится +1 Проголосовать: не нравится

its damn easy.i did a similar problem.just store the number of ones and zeros in both ranges.then just iterate over the 42 bits and pick zero from one set(a-b)and one from another and vice-versa.then multiply with 2^i(0-based index)using fast expo and sum it.and you get your answer

»
4 года назад, # |
  Проголосовать: нравится +4 Проголосовать: не нравится

Coding round for interships or coding round for full-time ?? @D_Coder_03

  • »
    »
    4 года назад, # ^ |
      Проголосовать: нравится +5 Проголосовать: не нравится

    Mine was for Internship

    • »
      »
      »
      4 года назад, # ^ |
        Проголосовать: нравится +2 Проголосовать: не нравится

      Could you share rest questions also in brief
      It will be helpful

      • »
        »
        »
        »
        4 года назад, # ^ |
        Rev. 4   Проголосовать: нравится +8 Проголосовать: не нравится

        There were 3 problems

        1st problem

        Check whether the string is good. A string is good if all its odd length substring are palindromes.

        Constraints 1<=|s|<=40

        Example

        INPUT- aaaaa OUTPUT- YES

        INPUT- xyz OUTPUT- NO

        2nd problem

        A number N is given. Find out the minimum cost to make it a good number.

        A good number is the sum of two numbers which are positive power of a single digit odd prime number.

        In one operation:

        1. You can add 1 to n with x cost

        2. You can subtract 1 from n with y cost

        You can do the operations any number of times.

        Contraints: 1<=N,x,y<=1e9

        Example

        INPUT- 4 5 6 OUTPUT- 24 Explanation- good no. is 3^1+5^1=8->(8-4)*6 = 24

        3rd problem was in the blog itself

        HOPE IT HELPS

        • »
          »
          »
          »
          »
          4 года назад, # ^ |
            Проголосовать: нравится 0 Проголосовать: не нравится

          Thanks man

          • »
            »
            »
            »
            »
            »
            4 года назад, # ^ |
              Проголосовать: нравится 0 Проголосовать: не нравится

            In problem 2 , for the given input 4,5,6 don't you think that the output should be 0 as N=4 is already a good no. coz it can be represented as 1^1+3^1.

        • »
          »
          »
          »
          »
          4 года назад, # ^ |
            Проголосовать: нравится +1 Проголосовать: не нравится

          Just a try at this..Will this logic work? Bruteforce for all powers of 3 , 5 and 7 and just check which combination gives the smallest answer becoz we know that the number of elements in each of their power lists cannot be more than 64.?

          • »
            »
            »
            »
            »
            »
            4 года назад, # ^ |
              Проголосовать: нравится +1 Проголосовать: не нравится

            An also how many questions were required to be solved for clearing this round ? 2 out of 3 ?

            • »
              »
              »
              »
              »
              »
              »
              4 года назад, # ^ |
                Проголосовать: нравится +1 Проголосовать: не нравится

              I guess all 3 will be required because first 2 were easy and the 3rd one was the only question which had extremely less fully accepted submissions.

              • »
                »
                »
                »
                »
                »
                »
                »
                4 года назад, # ^ |
                  Проголосовать: нравится +4 Проголосовать: не нравится

                I thought so XD. Too difficult to crack now it seems. Were there any partial points for the 3rd problem. XD

          • »
            »
            »
            »
            »
            »
            4 года назад, # ^ |
              Проголосовать: нравится +1 Проголосовать: не нравится

            Just precompute the sums of all the powers of 3 5 and 7 taking 2 at a time less than or equal to 1e9 then check between which 2 nos the N lies.

            • »
              »
              »
              »
              »
              »
              »
              4 года назад, # ^ |
                Проголосовать: нравится +3 Проголосовать: не нравится

              Yes this is also another bruteforce logic which can be used.

            • »
              »
              »
              »
              »
              »
              »
              3 года назад, # ^ |
              Rev. 3   Проголосовать: нравится +3 Проголосовать: не нравится

              how to precompute the sums of all the powers of 3,5,7 taking 2 at a time ? I mean like for example we choose 3 and 5, then we can store all combinations of 3^x . 5^y in sorted order or store in a set but how to do it ? just like a loop

              set<int> st;
              for(int x=0;pow(3,x)<1e9;x++)
                for(int y=0;pow(5,y)+pow(3,x)<1e9;y++)
                   st.insert(pow(3,x)+pow(5,y));
              

              please do we need to do something like this ?

              if you have code for it, please share.
              
        • »
          »
          »
          »
          »
          4 года назад, # ^ |
          Rev. 2   Проголосовать: нравится +1 Проголосовать: не нравится

          Hey,Can you help me with the second question Edit:Got it Thanks

        • »
          »
          »
          »
          »
          4 года назад, # ^ |
            Проголосовать: нравится 0 Проголосовать: не нравится

          In the second question, Is both prime numbers can be equal? Ex- 6 4 5

          the answer is zero because 3^1+3^1 = 6.

        • »
          »
          »
          »
          »
          4 года назад, # ^ |
            Проголосовать: нравится 0 Проголосовать: не нравится

          just curious. In q1. can we just find if whole string contain 1 char only or it is alternate with 2 char. Is this the logic??

          • »
            »
            »
            »
            »
            »
            4 года назад, # ^ |
              Проголосовать: нравится +3 Проголосовать: не нравится

            If the string contains the condition a[i]!=a[i+2] then the ans is false otherwise true

»
4 года назад, # |
Rev. 3   Проголосовать: нравится 0 Проголосовать: не нравится
  • As the constraints are enormous we have to do something with bits
  • First thought after this is to calculate every possible pair.
  • If we can find the total no.s between A and B with 1 at a particular place we can solve the question
  • Now we have no idea how to do that so we can take some examples
  • So first 15 digits are
1000  
0100  
1100  
0010  
1010  
0110  
1110  
0001  
1001  
0101   
1101   
0011  
1011  
0111  
1111
  • Now we will find total no.s from 1 to 15 with ith bit zero
  • there are (1<<i)-1 no of zeroes at ith place before the start of the pattern
  • Length of the pattern is (1<<(i+1)) for every place
  • so total zeroes after pattern starts is ((length of pattern) / 2) * total_no_of_complete_pattern + zeroes from a partial pattern that may of may not form at the end
  • total_no_of_complete_pattern (N)= (15 — ((1<<i) — 1) ) / ( 1<<i+1 ) now we can calculate the 1 part for 2 part we have a partial pattern of length (L) = ( 15 — ((1<<i) — 1) ) % ( 1<<i+1 ) now we can find no. of zeroes from it with simple if else
»
4 года назад, # |
Rev. 2   Проголосовать: нравится +3 Проголосовать: не нравится

Hi Everyone, please I want a verification for my method or point out if I am wrong. let $$$A_1,A_2...A_k$$$ are the numbers in range $$$[A,B]$$$ and similarly let $$$C_1,C_2...C_m$$$ are the numbers in range $$$[C,D]$$$ so basically I have to calculate $$$\displaystyle \sum\limits_{i = 1}^k\displaystyle \sum\limits_{j = 1}^m A_i \,xor\,C_j $$$. but we know that $$$A_i \,xor\,C_j=(A_i +C_j)-2(A_i\,and\,C_j)$$$ also we know that $$$A\,and\,B+A\,and\,B=A\,and\,(B+C)$$$. Now let $$$\displaystyle \sum\limits_{j = 1}^mC_j=S_1$$$. So our inner summation $$$\displaystyle \sum\limits_{j = 1}^m A_i \,xor\,C_j $$$ becomes $$$mA_i+S_1-2(A_i\,and\,S_1)$$$. Now let $$$\displaystyle \sum\limits_{i= 1}^kA_i=S_2$$$. So $$$\displaystyle \sum\limits_{i = 1}^k (mA_i+S_1-2(A_i\,and\,S_1))$$$ is our final answer and it equals $$$m*S_2+k*S_1-2*(S_1\,and\,S_2).$$$ Since we can find $$$S_1,S_2$$$ in constant time so time complexity is $$$O(1).$$$ Please point out anyone if I am wrong.

  • »
    »
    4 года назад, # ^ |
      Проголосовать: нравится +3 Проголосовать: не нравится

    okay:

    a ^ b = a + b — 2 * (a & b) [it's true]

    you are writing: A and B + A and B = A and (B + C) [it is not true]

    maybe you meant it?

    A and B + A and C = A and (B + C)

    however for A = B = C = 1

    => A and B + A and C = 1 + 1 = 2, A and (B + C) = 1 and 2 = 01 and 10 = 0, 2 != 0

    similar properties are very beautiful, if you wanted to write something like that, please share. That's very beautiful

    • »
      »
      »
      4 года назад, # ^ |
        Проголосовать: нравится +3 Проголосовать: не нравится

      I am so sorry. Thanks for pointing. This mistake (A and B + A and C = A and (B + C)) came because of Electrical stuff because there only LEDs are either on/off(0/1 bit) and for this that expression is true. But here we have Integers. Sorry, my method is useless then.

»
4 года назад, # |
Rev. 5   Проголосовать: нравится 0 Проголосовать: не нравится

Sorry,I didn't see the operator.Its exor I thought its addition. Pls don't read Try using prefix sum.Time complexity=O(n). Create a array of length=max_sum you can achieve+1 say the name of array is arr Initialize it with zeros Then run a loop from A to B: arr[i+C]+=1 arr[i+D+1]-=1 Then run a loop on array and perform arr[i]+=arr[i-1] Create a new var ans=0 now again iterate arr: and do ans+=arr[i]*i

»
4 года назад, # |
Rev. 3   Проголосовать: нравится +3 Проголосовать: не нравится
Code
»
3 года назад, # |
Rev. 6   Проголосовать: нравится 0 Проголосовать: не нравится

For each integer in range, a to b and range c to d find the number of integers having i-th (0 <= i <= 30) bit set and unset.

Let c11 denoted the count of integers in range a to b having i-th bit set. Then c12 = (b-a+1-c11) integers are having bits unset in this range.

Similarly, let c21 denoted the count of integers in range c to d having i-th bit set. Then c22 = (d-c+1-c21) integers are having bits unset in this range.

Now for each i-th bit in range (0,30). Add to answer the value equals ((c11*c22 + c12*c21) % mod) *(1LL<<i)) % mod where mod = 1e9+7.

Pseudo code

Reference GFG article: Count integers up to N having K-th bit set in O(1)

  • »
    »
    3 года назад, # ^ |
      Проголосовать: нравится +4 Проголосовать: не нравится

    understood the solution ! Is there some derivation on how ((n>>(k+1))<<k) gives count of numbers in range [1 to n-1] having kth bit set

    • »
      »
      »
      3 года назад, # ^ |
        Проголосовать: нравится 0 Проголосовать: не нравится

      It's all about finding "how many times the pattern is repeating?". Pls, try to convince yourself by doing it with small numbers up to 50 or so.

»
3 года назад, # |
  Проголосовать: нравится +6 Проголосовать: не нравится

Hello! Is there any way to check the code approach to this problem?

»
3 года назад, # |
  Проголосовать: нравится +1 Проголосовать: не нравится

Here is my approach for the problem:

Note considering the MOD part in the code (that can be included if required)

#include <bits/stdc++.h>
using namespace std;
#define int long long

// return the count of number of 1's at ith bit in a range [1, n]
long long getcount(long long n, int k)
{
	n++;
	long long res = (n >> (k + 1)) << k;
	if ((n >> k) & 1) res += n & ((1ll << k) - 1);
	return res;
}

signed main()
{
    int a, b, c, d;
    cin >> a >> b >> c >> d;
    int num1 = b - a + 1;
    int num2 = d - c + 1;
    int bit_count_outer[64], bit_count_inner[64];
    for(int i = 0; i <= 63; i++){
        bit_count_outer[i] = getcount(b, i) - getcount(a-1, i);
    }
    for(int i = 0; i <= 63; i++){
        bit_count_inner[i] = getcount(d, i) - getcount(c-1, i);
    }
    int sum = 0;
    int contrib = 1;
	for(int i = 0; i <= 63; i++){
	    int outer_one_count = bit_count_outer[i];
	    int outer_zero_count = num1 - outer_one_count;
	    int inner_one_count = bit_count_inner[i];
	    int inner_zero_count = num2 - inner_one_count;
	    int sum1 = (outer_one_count * inner_zero_count) + (outer_zero_count * inner_one_count);
	    sum +=  contrib * sum1;
	    contrib *= 2;
	}
	cout << "The sum is: " << sum << endl;
	return 0;
}